Difference between revisions of "Dedekind eta-function"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
The function defined by | The function defined by | ||
− | + | $$\eta(z)=e^{\pi iz/12}\prod_{n=1}^\infty(1-e^{2\pi inz})$$ | |
− | for | + | for $z\in\mathbf C$, $\operatorname{Im}z>0$. As the [[Infinite product|infinite product]] converges absolutely, uniformly for $z$ in compact sets (cf. [[Uniform convergence|Uniform convergence]]), the function $\eta$ is holomorphic (cf. [[Analytic function|Analytic function]]). Moreover, it satisfies $\eta(z+1)=e^{\pi i/12}\eta(z)$ and $\eta(-1/z)=\sqrt{-iz}\eta(z)$. So, $\eta^24$ is a [[Modular form|modular form]] of weight $12$ (cf. also [[Modular group|Modular group]]). |
R. Dedekind [[#References|[a1]]] comments on computations of B. Riemann in connection with theta-functions (cf. [[Theta-function|Theta-function]]). He shows that it is basic to understand the transformation behaviour of the logarithm of the function now carrying his name. This study leads him to quantities now called Dedekind sums (cf. [[Dedekind sum|Dedekind sum]]). See [[#References|[a2]]], Chapt. IV, for a further discussion. | R. Dedekind [[#References|[a1]]] comments on computations of B. Riemann in connection with theta-functions (cf. [[Theta-function|Theta-function]]). He shows that it is basic to understand the transformation behaviour of the logarithm of the function now carrying his name. This study leads him to quantities now called Dedekind sums (cf. [[Dedekind sum|Dedekind sum]]). See [[#References|[a2]]], Chapt. IV, for a further discussion. |
Revision as of 18:57, 14 August 2014
The function defined by
$$\eta(z)=e^{\pi iz/12}\prod_{n=1}^\infty(1-e^{2\pi inz})$$
for $z\in\mathbf C$, $\operatorname{Im}z>0$. As the infinite product converges absolutely, uniformly for $z$ in compact sets (cf. Uniform convergence), the function $\eta$ is holomorphic (cf. Analytic function). Moreover, it satisfies $\eta(z+1)=e^{\pi i/12}\eta(z)$ and $\eta(-1/z)=\sqrt{-iz}\eta(z)$. So, $\eta^24$ is a modular form of weight $12$ (cf. also Modular group).
R. Dedekind [a1] comments on computations of B. Riemann in connection with theta-functions (cf. Theta-function). He shows that it is basic to understand the transformation behaviour of the logarithm of the function now carrying his name. This study leads him to quantities now called Dedekind sums (cf. Dedekind sum). See [a2], Chapt. IV, for a further discussion.
References
[a1] | R. Dedekind, "Erläuterungen zu den fragmenten XXVIII" H. Weber (ed.) , B. Riemann: Gesammelte mathematische Werke und wissenschaftlicher Nachlass , Dover, reprint (1953) |
[a2] | H. Rademacher, E. Grosswald, "Dedekind sums" , Math. Assoc. America (1972) |
Dedekind eta-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dedekind_eta-function&oldid=15345