Difference between revisions of "Hurwitz equation"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
''Markoff–Hurwitz equation, Markov–Hurwitz equation'' | ''Markoff–Hurwitz equation, Markov–Hurwitz equation'' | ||
A Diophantine equation (cf. [[Diophantine equations|Diophantine equations]]) of the form | A Diophantine equation (cf. [[Diophantine equations|Diophantine equations]]) of the form | ||
− | + | $$x_1^2+\ldots+x_n^2=ax_1\ldots x_n\tag{a1}$$ | |
− | for fixed | + | for fixed $a,n\in\mathbf Z^+$, $n\geq3$. The case $n=a=3$ was studied by A.A. Markoff [A.A. Markov] [[#References|[a1]]] because of its relation to [[Diophantine approximations|Diophantine approximations]] (cf. also [[Markov spectrum problem|Markov spectrum problem]]). More generally, these equations were studied by A. Hurwitz [[#References|[a2]]]. These equations are of interest because the set of integer solutions to \ref{a1} is closed under the action of the group of automorphisms $\mathcal A$ generated by the permutations of the variables $\{x_1,\ldots,x_n\}$, sign changes of pairs of variables, and the mapping |
− | + | $$\sigma(x_1,\ldots,x_n)=(ax_2\ldots x_n-x_1,x_2,\ldots,x_n).$$ | |
− | If | + | If \ref{a1} has an integer solution $P$ and $P$ is not the trivial solution $(0,\ldots,0)$, then its $\mathcal A$-orbit $\mathcal A(P)$ is infinite. Hurwitz showed that if \ref{a1} has a non-trivial integer solution, then $a\leq n$; and if $a=n$, then the full set of integer solutions is the $\mathcal A$-orbit of $(1,\ldots,1)$ together with the trivial solution. N.P. Herzberg [[#References|[a3]]] gave an efficient algorithm to find pairs $(a,n)$ for which the Hurwitz equation has a non-trivial solution. Hurwitz also showed that for any pair $(a,n)$ there exists a finite set of fundamental solutions $\{P_1,\ldots,P_r\}$ such that the orbits $\mathcal A(P_i)$ are distinct and the set of non-trivial integer solutions is exactly the union of these orbits. A. Baragar [[#References|[a4]]] showed that for any $r$ there exists a pair $(a,n)$ such that \ref{a1} has at least $r$ fundamental solutions. |
− | D. Zagier [[#References|[a5]]] investigated the asymptotic growth for the number of solutions to the Markov equation ( | + | D. Zagier [[#References|[a5]]] investigated the asymptotic growth for the number of solutions to the Markov equation ($a=n=3$) below a given bound, and Baragar [[#References|[a6]]] investigated the cases $n\geq4$. |
There are a few variations to the Hurwitz equations which admit a similar group of automorphisms. These include variations studied by L.J. Mordell [[#References|[a7]]] and G. Rosenberger [[#References|[a8]]]. L. Wang [[#References|[a9]]] studied a class of smooth variations. | There are a few variations to the Hurwitz equations which admit a similar group of automorphisms. These include variations studied by L.J. Mordell [[#References|[a7]]] and G. Rosenberger [[#References|[a8]]]. L. Wang [[#References|[a9]]] studied a class of smooth variations. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.A. Markoff, "Sur les formes binaires indéfinies" ''Math. Ann.'' , '''17''' (1880) pp. 379–399</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Hurwitz, "Über eine Aufgabe der unbestimmten Analysis" ''Archiv. Math. Phys.'' , '''3''' (1907) pp. 185–196 (Also: Mathematisch Werke, Vol. 2, Chapt. LXX (1933 and 1962), 410–421)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N.P. Herzberg, "On a problem of Hurwitz" ''Pacific J. Math.'' , '''50''' (1974) pp. 485–493</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Baragar, "Integral solutions of Markoff–Hurwitz equations" ''J. Number Th.'' , '''49''' : 1 (1994) pp. 27–44</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> D. Zagier, "On the number of Markoff numbers below a given bound" ''Math. Comp.'' , '''39''' (1982) pp. 709–723</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Baragar, "Asymptotic growth of Markoff–Hurwitz numbers" ''Compositio Math.'' , '''94''' (1994) pp. 1–18</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> L.J. Mordell, "On the integer solutions of the equation | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.A. Markoff, "Sur les formes binaires indéfinies" ''Math. Ann.'' , '''17''' (1880) pp. 379–399</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Hurwitz, "Über eine Aufgabe der unbestimmten Analysis" ''Archiv. Math. Phys.'' , '''3''' (1907) pp. 185–196 (Also: Mathematisch Werke, Vol. 2, Chapt. LXX (1933 and 1962), 410–421)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N.P. Herzberg, "On a problem of Hurwitz" ''Pacific J. Math.'' , '''50''' (1974) pp. 485–493</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. Baragar, "Integral solutions of Markoff–Hurwitz equations" ''J. Number Th.'' , '''49''' : 1 (1994) pp. 27–44</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> D. Zagier, "On the number of Markoff numbers below a given bound" ''Math. Comp.'' , '''39''' (1982) pp. 709–723</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Baragar, "Asymptotic growth of Markoff–Hurwitz numbers" ''Compositio Math.'' , '''94''' (1994) pp. 1–18</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> L.J. Mordell, "On the integer solutions of the equation $x^2+y^2+z^2+2xyz=n$" ''J. London Math. Soc.'' , '''28''' (1953) pp. 500–510</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> G. Rosenberger, "Über die Diophantische Gleichung $ax^2+by^2+cz^2=dxyz$" ''J. Reine Angew. Math.'' , '''305''' (1979) pp. 122–125</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> L. Wang, "Rational points and canonical heights on K3-surfaces in $\mathbf P^1\times\mathbf P^1\times\mathbf P^1$" ''Contemp. Math.'' , '''186''' (1995) pp. 273–289</TD></TR></table> |
Revision as of 14:50, 13 August 2014
Markoff–Hurwitz equation, Markov–Hurwitz equation
A Diophantine equation (cf. Diophantine equations) of the form
$$x_1^2+\ldots+x_n^2=ax_1\ldots x_n\tag{a1}$$
for fixed $a,n\in\mathbf Z^+$, $n\geq3$. The case $n=a=3$ was studied by A.A. Markoff [A.A. Markov] [a1] because of its relation to Diophantine approximations (cf. also Markov spectrum problem). More generally, these equations were studied by A. Hurwitz [a2]. These equations are of interest because the set of integer solutions to \ref{a1} is closed under the action of the group of automorphisms $\mathcal A$ generated by the permutations of the variables $\{x_1,\ldots,x_n\}$, sign changes of pairs of variables, and the mapping
$$\sigma(x_1,\ldots,x_n)=(ax_2\ldots x_n-x_1,x_2,\ldots,x_n).$$
If \ref{a1} has an integer solution $P$ and $P$ is not the trivial solution $(0,\ldots,0)$, then its $\mathcal A$-orbit $\mathcal A(P)$ is infinite. Hurwitz showed that if \ref{a1} has a non-trivial integer solution, then $a\leq n$; and if $a=n$, then the full set of integer solutions is the $\mathcal A$-orbit of $(1,\ldots,1)$ together with the trivial solution. N.P. Herzberg [a3] gave an efficient algorithm to find pairs $(a,n)$ for which the Hurwitz equation has a non-trivial solution. Hurwitz also showed that for any pair $(a,n)$ there exists a finite set of fundamental solutions $\{P_1,\ldots,P_r\}$ such that the orbits $\mathcal A(P_i)$ are distinct and the set of non-trivial integer solutions is exactly the union of these orbits. A. Baragar [a4] showed that for any $r$ there exists a pair $(a,n)$ such that \ref{a1} has at least $r$ fundamental solutions.
D. Zagier [a5] investigated the asymptotic growth for the number of solutions to the Markov equation ($a=n=3$) below a given bound, and Baragar [a6] investigated the cases $n\geq4$.
There are a few variations to the Hurwitz equations which admit a similar group of automorphisms. These include variations studied by L.J. Mordell [a7] and G. Rosenberger [a8]. L. Wang [a9] studied a class of smooth variations.
References
[a1] | A.A. Markoff, "Sur les formes binaires indéfinies" Math. Ann. , 17 (1880) pp. 379–399 |
[a2] | A. Hurwitz, "Über eine Aufgabe der unbestimmten Analysis" Archiv. Math. Phys. , 3 (1907) pp. 185–196 (Also: Mathematisch Werke, Vol. 2, Chapt. LXX (1933 and 1962), 410–421) |
[a3] | N.P. Herzberg, "On a problem of Hurwitz" Pacific J. Math. , 50 (1974) pp. 485–493 |
[a4] | A. Baragar, "Integral solutions of Markoff–Hurwitz equations" J. Number Th. , 49 : 1 (1994) pp. 27–44 |
[a5] | D. Zagier, "On the number of Markoff numbers below a given bound" Math. Comp. , 39 (1982) pp. 709–723 |
[a6] | A. Baragar, "Asymptotic growth of Markoff–Hurwitz numbers" Compositio Math. , 94 (1994) pp. 1–18 |
[a7] | L.J. Mordell, "On the integer solutions of the equation $x^2+y^2+z^2+2xyz=n$" J. London Math. Soc. , 28 (1953) pp. 500–510 |
[a8] | G. Rosenberger, "Über die Diophantische Gleichung $ax^2+by^2+cz^2=dxyz$" J. Reine Angew. Math. , 305 (1979) pp. 122–125 |
[a9] | L. Wang, "Rational points and canonical heights on K3-surfaces in $\mathbf P^1\times\mathbf P^1\times\mathbf P^1$" Contemp. Math. , 186 (1995) pp. 273–289 |
Hurwitz equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hurwitz_equation&oldid=16935