Namespaces
Variants
Actions

Difference between revisions of "Pappus axiom"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711401.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711402.png" /> are two distinct straight lines and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711403.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711404.png" /> are distinct points on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711405.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711406.png" />, respectively, and if none of these is the point of intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711407.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711408.png" />, then the points of intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p0711409.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p07114010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p07114011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p07114012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p07114013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071140/p07114014.png" /> are collinear.
+
{{TEX|done}}
 +
If $l$ and $l'$ are two distinct straight lines and $A,B,C$ and $A',B',C'$ are distinct points on $l$ and $l'$, respectively, and if none of these is the point of intersection of $l$ and $l'$, then the points of intersection of $AB'$ and $A'B$, $BC'$ and $B'C$, $AC'$ and $A'C$ are collinear.
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p071140a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p071140a.gif" />

Latest revision as of 12:52, 10 August 2014

If $l$ and $l'$ are two distinct straight lines and $A,B,C$ and $A',B',C'$ are distinct points on $l$ and $l'$, respectively, and if none of these is the point of intersection of $l$ and $l'$, then the points of intersection of $AB'$ and $A'B$, $BC'$ and $B'C$, $AC'$ and $A'C$ are collinear.

Figure: p071140a

The truth of Pappus' axiom is equivalent to the commutativity of the skew-field of the corresponding projective geometry. The Desargues assumption is a consequence of Pappus' axiom (Hessenberg's theorem), and at the same time Pappus' axiom is a degenerate case of the Pascal theorem. The axiom was proposed by Pappus (3rd century).


Comments

References

[a1] O. Veblen, J.W. Young, "Projective geometry" , 1 , Ginn (1910)
How to Cite This Entry:
Pappus axiom. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pappus_axiom&oldid=12149
This article was adapted from an original article by P.S. ModenovA.S. Parkhomenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article