|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''normalized equation'' | | ''normalized equation'' |
| | | |
| The equation of a line in a plane of the form | | The equation of a line in a plane of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674901.png" /></td> </tr></table>
| + | $$x\cos\alpha+y\sin\alpha-p=0,$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674902.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674903.png" /> are rectangular Cartesian coordinates in the plane, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674904.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674905.png" /> are the coordinates of the unit vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674906.png" /> perpendicular to the line, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674907.png" /> is the distance of the coordinate origin from the line. An equation of a line of the form | + | where $x$ and $y$ are rectangular Cartesian coordinates in the plane, $\cos\alpha$ and $\sin\alpha$ are the coordinates of the unit vector $\{\cos\alpha,\sin\alpha\}$ perpendicular to the line, and $p\geq0$ is the distance of the coordinate origin from the line. An equation of a line of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674908.png" /></td> </tr></table>
| + | $$Ax+By+C=0$$ |
| | | |
− | reduces to normal form after multiplication by the normalizing factor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n0674909.png" /> of absolute value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749010.png" /> and of sign opposite to that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749011.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749012.png" />, the sign of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749013.png" /> is arbitrary). | + | reduces to normal form after multiplication by the normalizing factor $\lambda$ of absolute value $(A^2+B^2)^{-1/2}$ and of sign opposite to that of $C$ (if $C=0$, the sign of $\lambda$ is arbitrary). |
| | | |
| Similarly, the equation of a plane | | Similarly, the equation of a plane |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749014.png" /></td> </tr></table>
| + | $$Ax+By+Cz+D=0$ |
| | | |
| reduces to the normal form | | reduces to the normal form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749015.png" /></td> </tr></table>
| + | $$x\cos\alpha+y\cos\beta+z\cos\gamma-p=0,$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749018.png" /> are the direction cosines of a vector perpendicular to the plane, after multiplication by the normalizing factor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749019.png" /> of absolute value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749020.png" /> and of sign opposite to that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067490/n06749021.png" />. | + | where $\cos\alpha$, $\cos\beta$ and $\cos\gamma$ are the direction cosines of a vector perpendicular to the plane, after multiplication by the normalizing factor $\gamma$ of absolute value $(A^2+B^2+C^2)^{-1/2}$ and of sign opposite to that of $D$. |
Revision as of 07:49, 15 July 2014
normalized equation
The equation of a line in a plane of the form
$$x\cos\alpha+y\sin\alpha-p=0,$$
where $x$ and $y$ are rectangular Cartesian coordinates in the plane, $\cos\alpha$ and $\sin\alpha$ are the coordinates of the unit vector $\{\cos\alpha,\sin\alpha\}$ perpendicular to the line, and $p\geq0$ is the distance of the coordinate origin from the line. An equation of a line of the form
$$Ax+By+C=0$$
reduces to normal form after multiplication by the normalizing factor $\lambda$ of absolute value $(A^2+B^2)^{-1/2}$ and of sign opposite to that of $C$ (if $C=0$, the sign of $\lambda$ is arbitrary).
Similarly, the equation of a plane
$$Ax+By+Cz+D=0$
reduces to the normal form
$$x\cos\alpha+y\cos\beta+z\cos\gamma-p=0,$$
where $\cos\alpha$, $\cos\beta$ and $\cos\gamma$ are the direction cosines of a vector perpendicular to the plane, after multiplication by the normalizing factor $\gamma$ of absolute value $(A^2+B^2+C^2)^{-1/2}$ and of sign opposite to that of $D$.
How to Cite This Entry:
Normal equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_equation&oldid=17334
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article