Namespaces
Variants
Actions

Difference between revisions of "Continuous group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
In the fundamental works on the theory of Lie groups (S. Lie, H. Poincaré, E. Cartan, H. Weyl, and others) it is a group of smooth or analytic transformations of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025690/c0256901.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025690/c0256902.png" />, depending smoothly or analytically on parameters. When there are finitely many numerical parameters, a continuous group is called finite, which corresponds to the modern concept of a finite-dimensional [[Lie group|Lie group]]. In the presence of parameters that are functions one speaks of an infinite continuous group, which corresponds to the modern concept of a [[Pseudo-group|pseudo-group]] of transformations. Nowadays (1988) the term  "continuous group"  often stands for [[Topological group|topological group]] [[#References|[2]]].
+
{{TEX|done}}
 +
In the fundamental works on the theory of Lie groups (S. Lie, H. Poincaré, E. Cartan, H. Weyl, and others) it is a group of smooth or analytic transformations of the space $\mathbf R^n$ or $\mathbf C^n$, depending smoothly or analytically on parameters. When there are finitely many numerical parameters, a continuous group is called finite, which corresponds to the modern concept of a finite-dimensional [[Lie group|Lie group]]. In the presence of parameters that are functions one speaks of an infinite continuous group, which corresponds to the modern concept of a [[Pseudo-group|pseudo-group]] of transformations. Nowadays (1988) the term  "continuous group"  often stands for [[Topological group|topological group]] [[#References|[2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lie,  G. Scheffers,  "Vorlesungen über Transformationsgruppen" , Teubner  (1893)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley  (1975)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lie,  G. Scheffers,  "Vorlesungen über Transformationsgruppen" , Teubner  (1893)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley  (1975)  (Translated from French)</TD></TR></table>

Latest revision as of 21:21, 9 July 2014

In the fundamental works on the theory of Lie groups (S. Lie, H. Poincaré, E. Cartan, H. Weyl, and others) it is a group of smooth or analytic transformations of the space $\mathbf R^n$ or $\mathbf C^n$, depending smoothly or analytically on parameters. When there are finitely many numerical parameters, a continuous group is called finite, which corresponds to the modern concept of a finite-dimensional Lie group. In the presence of parameters that are functions one speaks of an infinite continuous group, which corresponds to the modern concept of a pseudo-group of transformations. Nowadays (1988) the term "continuous group" often stands for topological group [2].

References

[1] S. Lie, G. Scheffers, "Vorlesungen über Transformationsgruppen" , Teubner (1893)
[2] L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)
[3] N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)
How to Cite This Entry:
Continuous group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Continuous_group&oldid=15790
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article