Namespaces
Variants
Actions

Difference between revisions of "Asymptotic formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
A formula containing the symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a0136903.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a0136904.png" /> or the equivalence sign <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a0136906.png" /> ([[Asymptotic equality|asymptotic equality]] of functions).
+
{{TEX|done}}
 +
A formula containing the symbols $o$, $O$ or the equivalence sign $\sim$ ([[Asymptotic equality|asymptotic equality]] of functions).
  
 
Examples of asymptotic formulas:
 
Examples of asymptotic formulas:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a0136907.png" /></td> </tr></table>
+
$$\sin x=x+o(x^2),\quad x\to0;$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a0136908.png" /></td> </tr></table>
+
$$\cos x=1+O(x^2),\quad x\to0;$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a0136909.png" /></td> </tr></table>
+
$$x^3+x+1\sim x^3,\quad x\to\infty;$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a01369010.png" /></td> </tr></table>
+
$$\pi(x)\sim\frac{x}{\ln x},\quad x\to\infty$$
  
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a01369011.png" /> is the amount of prime numbers not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a01369012.png" />).
+
($\pi(x)$ is the amount of prime numbers not exceeding $x$).
  
  
  
 
====Comments====
 
====Comments====
On the meaning of the symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a01369013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a013/a013690/a01369014.png" />, see e.g. [[#References|[a1]]] or [[#References|[a2]]].
+
On the meaning of the symbols $o, O$ and $\sim$, see e.g. [[#References|[a1]]] or [[#References|[a2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.G. de Bruijn,  "Asymptotic methods in analysis" , Dover, reprint  (1981)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Erdélyi,  "Asymptotic expansions" , Dover, reprint  (1956)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.G. de Bruijn,  "Asymptotic methods in analysis" , Dover, reprint  (1981)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Erdélyi,  "Asymptotic expansions" , Dover, reprint  (1956)</TD></TR></table>

Latest revision as of 19:15, 7 July 2014

A formula containing the symbols $o$, $O$ or the equivalence sign $\sim$ (asymptotic equality of functions).

Examples of asymptotic formulas:

$$\sin x=x+o(x^2),\quad x\to0;$$

$$\cos x=1+O(x^2),\quad x\to0;$$

$$x^3+x+1\sim x^3,\quad x\to\infty;$$

$$\pi(x)\sim\frac{x}{\ln x},\quad x\to\infty$$

($\pi(x)$ is the amount of prime numbers not exceeding $x$).


Comments

On the meaning of the symbols $o, O$ and $\sim$, see e.g. [a1] or [a2].

References

[a1] N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)
[a2] A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)
How to Cite This Entry:
Asymptotic formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotic_formula&oldid=15758
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article