|
|
Line 1: |
Line 1: |
− | One of the two values, "true" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943901.png" /> or "false" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943902.png" />, that can be taken by a given logical formula in an interpretation (model) considered. Sometimes the truth value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943903.png" /> is denoted in the literature by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943904.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943905.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943906.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943907.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943908.png" />. If the truth values of elementary formulas are defined in a model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t0943909.png" />, then the truth value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439010.png" /> of any formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439011.png" /> can be inductively determined in the following way (for classical logic):
| + | {{MSC|03}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439012.png" /></td> </tr></table>
| + | The ''truth value'' |
| + | is one of the two values, "true" $(T)$ or "false" $(F)$, that can be taken by a given logical formula in an interpretation (model) considered. Sometimes the truth value $T$ is denoted in the literature by $1$ or $t$, and $F$ by $0$ or $f$. If the truth values of elementary formulas are defined in a model $\def\fM{ {\mathfrak M} }$, then the truth value $||A||$ of any formula $A$ can be inductively determined in the following way (for classical logic): |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439013.png" /></td> </tr></table>
| + | $$||B\& C||=T \iff ||B||=T \text{ and } ||C||=T,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439014.png" /></td> </tr></table>
| + | $$||B \vee C||=T \iff ||B||=T \text{ or } ||C||=T,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439015.png" /></td> </tr></table>
| + | $$||B \supset C||=T \iff ||B||=F \text{ or } ||C||=T.$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439016.png" /></td> </tr></table>
| + | $$||\neg B||=T \iff ||B||=F,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439017.png" /></td> </tr></table>
| + | $$||\forall xB(x)||=T \iff \text{ for all } a\text{ in }\fM:||B(a)|| = T,$$ |
| | | |
− | One sometimes considers interpretations in which logical formulas may take, besides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439019.png" />, other "intermediate" truth values. In such interpretations, the truth values of formulas may be, e.g., elements of Boolean algebras (so-called Boolean-valued models for classical logic, cf. [[Boolean-valued model|Boolean-valued model]]), elements of pseudo-Boolean algebras (also known as Heyting algebras, cf. [[Pseudo-Boolean algebra|Pseudo-Boolean algebra]]) or open sets in topological spaces (for intuitionistic logic), or elements of topological Boolean algebras (for [[Modal logic|modal logic]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439020.png" />) (cf. [[#References|[2]]]). In a Boolean-valued model, if the truth values of elementary formulas are defined, then the truth values of compound formulas can be determined as follows | + | $$||\exists xB(x)||=T \iff \text{ for some } a\text{ in }\fM:||B|| = T,$$ |
| + | One sometimes considers interpretations in which logical formulas may take, besides $T$ and $F$, other "intermediate" truth values. In such interpretations, the truth values of formulas may be, e.g., elements of Boolean algebras (so-called Boolean-valued models for classical logic, cf. |
| + | [[Boolean-valued model|Boolean-valued model]]), elements of pseudo-Boolean algebras (also known as Heyting algebras, cf. |
| + | [[Pseudo-Boolean algebra|Pseudo-Boolean algebra]]) or open sets in topological spaces (for intuitionistic logic), or elements of topological Boolean algebras (for |
| + | [[Modal logic|modal logic]] $S4$) (cf. |
| + | {{Cite|RaSi}}). In a Boolean-valued model, if the truth values of elementary formulas are defined, then the truth values of compound formulas can be determined as follows |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439021.png" /></td> </tr></table>
| + | $$||B\& C||=||B||\cap||C||,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439022.png" /></td> </tr></table>
| + | $$||B\vee C||=||B||\cup||C||,\qquad ||B\supset C||=\overline{||B||}\cup||C||,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439023.png" /></td> </tr></table>
| + | $$||\neg B||=\overline{||B||},\qquad \forall xB(x) = \bigcap_{a\in\fM} ||B(a)||,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439024.png" /></td> </tr></table>
| + | $$||\exists xB(x)||=\bigcup_{a\in\fM} ||B(a)||,$$ |
| + | where $\overline{||B||}$ is the complement to the element $||B||$. For example, in topological models for intuitionistic logic, the truth values of compound formulas can be determined as follows: |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439025.png" /> is the complement to the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439026.png" />. For example, in topological models for intuitionistic logic, the truth values of compound formulas can be determined as follows:
| + | $$||B\& C||=||B||\cap||C||, \qquad ||B\vee C||=||B||\cup||C||,$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439027.png" /></td> </tr></table>
| + | $$||B \supset C|| =\text{ Int }(\overline{||B||}\cup||C||), \quad ||\neg B||=\text{ Int }(\overline{||B||},$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439028.png" /></td> </tr></table>
| + | $$||\forall xB(x)|| = \text{ Int }\big( \bigcap_{a\in \fM} ||B(a)||\big),$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439029.png" /></td> </tr></table>
| + | $$||\exists xB(x)|| = \bigcup_{a\in \fM} ||B(a)||,$$ |
| + | where $\text{ Int }(X)$ denotes the interior of the set $X$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439030.png" /></td> </tr></table>
| + | ====References==== |
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|No}}||valign="top"| P.S. Novikov, "Elements of mathematical logic", Oliver & Boyd and Acad. Press (1964) (Translated from Russian) {{MR|0164868}} {{ZBL|0113.00301}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439031.png" /> denotes the interior of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094390/t09439032.png" />.
| + | |- |
| + | |valign="top"|{{Ref|RaSi}}||valign="top"| E. Rasiowa, R. Sikorski, "The mathematics of metamathematics", Polska Akad. Nauk (1963) {{MR|0163850}} {{ZBL|0122.24311}} |
| | | |
− | ====References====
| + | |- |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Novikov, "Elements of mathematical logic" , Oliver & Boyd and Acad. Press (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Rasiowa, R. Sikorski, "The mathematics of metamathematics" , Polska Akad. Nauk (1963)</TD></TR></table>
| + | |} |
2020 Mathematics Subject Classification: Primary: 03-XX [MSN][ZBL]
The truth value
is one of the two values, "true" $(T)$ or "false" $(F)$, that can be taken by a given logical formula in an interpretation (model) considered. Sometimes the truth value $T$ is denoted in the literature by $1$ or $t$, and $F$ by $0$ or $f$. If the truth values of elementary formulas are defined in a model $\def\fM{ {\mathfrak M} }$, then the truth value $||A||$ of any formula $A$ can be inductively determined in the following way (for classical logic):
$$||B\& C||=T \iff ||B||=T \text{ and } ||C||=T,$$
$$||B \vee C||=T \iff ||B||=T \text{ or } ||C||=T,$$
$$||B \supset C||=T \iff ||B||=F \text{ or } ||C||=T.$$
$$||\neg B||=T \iff ||B||=F,$$
$$||\forall xB(x)||=T \iff \text{ for all } a\text{ in }\fM:||B(a)|| = T,$$
$$||\exists xB(x)||=T \iff \text{ for some } a\text{ in }\fM:||B|| = T,$$
One sometimes considers interpretations in which logical formulas may take, besides $T$ and $F$, other "intermediate" truth values. In such interpretations, the truth values of formulas may be, e.g., elements of Boolean algebras (so-called Boolean-valued models for classical logic, cf.
Boolean-valued model), elements of pseudo-Boolean algebras (also known as Heyting algebras, cf.
Pseudo-Boolean algebra) or open sets in topological spaces (for intuitionistic logic), or elements of topological Boolean algebras (for
modal logic $S4$) (cf.
[RaSi]). In a Boolean-valued model, if the truth values of elementary formulas are defined, then the truth values of compound formulas can be determined as follows
$$||B\& C||=||B||\cap||C||,$$
$$||B\vee C||=||B||\cup||C||,\qquad ||B\supset C||=\overline{||B||}\cup||C||,$$
$$||\neg B||=\overline{||B||},\qquad \forall xB(x) = \bigcap_{a\in\fM} ||B(a)||,$$
$$||\exists xB(x)||=\bigcup_{a\in\fM} ||B(a)||,$$
where $\overline{||B||}$ is the complement to the element $||B||$. For example, in topological models for intuitionistic logic, the truth values of compound formulas can be determined as follows:
$$||B\& C||=||B||\cap||C||, \qquad ||B\vee C||=||B||\cup||C||,$$
$$||B \supset C|| =\text{ Int }(\overline{||B||}\cup||C||), \quad ||\neg B||=\text{ Int }(\overline{||B||},$$
$$||\forall xB(x)|| = \text{ Int }\big( \bigcap_{a\in \fM} ||B(a)||\big),$$
$$||\exists xB(x)|| = \bigcup_{a\in \fM} ||B(a)||,$$
where $\text{ Int }(X)$ denotes the interior of the set $X$.
References
[No] |
P.S. Novikov, "Elements of mathematical logic", Oliver & Boyd and Acad. Press (1964) (Translated from Russian) MR0164868 Zbl 0113.00301
|
[RaSi] |
E. Rasiowa, R. Sikorski, "The mathematics of metamathematics", Polska Akad. Nauk (1963) MR0163850 Zbl 0122.24311
|