|
|
Line 1: |
Line 1: |
− | ''of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f0382302.png" />'' | + | {{TEX|done}} |
| + | ''of order $n$'' |
| | | |
− | The increasing sequence of non-negative irreducible fractions not exceeding 1 with denominators not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f0382303.png" />. For example, the Farey series of order 5 is the sequence | + | The increasing sequence of non-negative irreducible fractions not exceeding 1 with denominators not exceeding $n$. For example, the Farey series of order 5 is the sequence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f0382304.png" /></td> </tr></table>
| + | $$\frac01,\frac15,\frac14,\frac13,\frac25,\frac12,\frac35,\frac23,\frac34,\frac45,\frac11.$$ |
| | | |
| The following assertions hold. | | The following assertions hold. |
| | | |
− | 1) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f0382305.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f0382306.png" /> are two consecutive terms of the Farey series of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f0382307.png" />, then | + | 1) If $a/b$ and $a'/b'$ are two consecutive terms of the Farey series of order $n$, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f0382308.png" /></td> </tr></table>
| + | $$ba'-ab'=1.$$ |
| | | |
− | 2) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f0382309.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f03823010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f03823011.png" /> are three consecutive terms of the Farey series of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f03823012.png" />, then | + | 2) If $a/b$, $a'/b'$, $a''/b''$ are three consecutive terms of the Farey series of order $n$, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f03823013.png" /></td> </tr></table>
| + | $$\frac{a''}{b''}=\frac{a+a'}{b+b'}.$$ |
| | | |
− | 3) The number of terms in the Farey series of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f03823014.png" /> is equal to | + | 3) The number of terms in the Farey series of order $n$ is equal to |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f03823015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$1+\sum_{x=1}^n\phi(x).\tag{*}$$ |
| | | |
| Farey series were investigated by J. Farey (1816). | | Farey series were investigated by J. Farey (1816). |
Line 27: |
Line 28: |
| | | |
| ====Comments==== | | ====Comments==== |
− | Of course, in (*) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f038/f038230/f03823016.png" /> denotes the [[Euler function|Euler function]]. | + | Of course, in \ref{*} $\phi$ denotes the [[Euler function|Euler function]]. |
Revision as of 14:31, 1 May 2014
of order $n$
The increasing sequence of non-negative irreducible fractions not exceeding 1 with denominators not exceeding $n$. For example, the Farey series of order 5 is the sequence
$$\frac01,\frac15,\frac14,\frac13,\frac25,\frac12,\frac35,\frac23,\frac34,\frac45,\frac11.$$
The following assertions hold.
1) If $a/b$ and $a'/b'$ are two consecutive terms of the Farey series of order $n$, then
$$ba'-ab'=1.$$
2) If $a/b$, $a'/b'$, $a''/b''$ are three consecutive terms of the Farey series of order $n$, then
$$\frac{a''}{b''}=\frac{a+a'}{b+b'}.$$
3) The number of terms in the Farey series of order $n$ is equal to
$$1+\sum_{x=1}^n\phi(x).\tag{*}$$
Farey series were investigated by J. Farey (1816).
References
[1] | A.A. Bukhshtab, "Number theory" , Moscow (1966) (In Russian) |
[2] | R.R. Hall, "A note on Farey series" J. London Math. Soc. , 2 (1970) pp. 139–148 |
[3] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) |
Of course, in \ref{*} $\phi$ denotes the Euler function.
How to Cite This Entry:
Farey series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Farey_series&oldid=16556
This article was adapted from an original article by V.I. Nechaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article