Namespaces
Variants
Actions

Difference between revisions of "Adjoint surface"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
A surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109001.png" /> that is in [[Peterson correspondence|Peterson correspondence]] with a given surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109002.png" /> and is, moreover, such that the asymptotic net on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109003.png" /> corresponds to a conjugate net <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109004.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109005.png" /> with equal invariants, and vice versa. The adjoint surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109006.png" /> is the [[Rotation indicatrix|rotation indicatrix]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109007.png" />, and vice versa. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109008.png" /> is a principal base for a deformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a0109009.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010900/a01090010.png" /> is a [[Bianchi surface|Bianchi surface]].
+
{{TEX|done}}
 +
A surface $Y$ that is in [[Peterson correspondence|Peterson correspondence]] with a given surface $X$ and is, moreover, such that the asymptotic net on $Y$ corresponds to a conjugate net $\sigma$ on $X$ with equal invariants, and vice versa. The adjoint surface $Y$ is the [[Rotation indicatrix|rotation indicatrix]] for $X$, and vice versa. If $\sigma$ is a principal base for a deformation of $X$, then $Y$ is a [[Bianchi surface|Bianchi surface]].

Revision as of 14:16, 29 April 2014

A surface $Y$ that is in Peterson correspondence with a given surface $X$ and is, moreover, such that the asymptotic net on $Y$ corresponds to a conjugate net $\sigma$ on $X$ with equal invariants, and vice versa. The adjoint surface $Y$ is the rotation indicatrix for $X$, and vice versa. If $\sigma$ is a principal base for a deformation of $X$, then $Y$ is a Bianchi surface.

How to Cite This Entry:
Adjoint surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Adjoint_surface&oldid=19305
This article was adapted from an original article by I.Kh. Sabitov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article