|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''complemented lattice'' | | ''complemented lattice'' |
| | | |
− | A [[Lattice|lattice]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576801.png" /> with a zero 0 and a unit 1 in which for any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576802.png" /> there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576803.png" /> (called a complement of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576804.png" />) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576805.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576806.png" />. If for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576807.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576808.png" /> the [[Interval|interval]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l0576809.png" /> is a complemented lattice, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768010.png" /> is called a relatively complemented lattice. Each complemented [[Modular lattice|modular lattice]] is a relatively complemented lattice. A lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768011.png" /> with a zero 0 is called: a) a partially complemented lattice if each of its intervals of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768013.png" />, is a complemented lattice; b) a weakly complemented lattice if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768014.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768015.png" /> there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768016.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768018.png" />; c) a semi-complemented lattice if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768020.png" />, there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768022.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768023.png" />; d) a pseudo-complemented lattice if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768024.png" /> there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768025.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768026.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768027.png" />; and e) a quasi-complemented lattice if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768028.png" /> there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768029.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057680/l05768031.png" /> is a dense element. Ortho-complemented lattices also play an important role (see [[Orthomodular lattice|Orthomodular lattice]]). See [[#References|[4]]] for the relation between the various types of complements in lattices. | + | A [[Lattice|lattice]] $L$ with a zero 0 and a unit 1 in which for any element $a$ there is an element $b$ (called a complement of the element $a$) such that $a\lor b=1$ and $a\land b=0$. If for any $a,b\in L$ with $a\leq b$ the [[Interval|interval]] $[a,b]$ is a complemented lattice, then $L$ is called a relatively complemented lattice. Each complemented [[Modular lattice|modular lattice]] is a relatively complemented lattice. A lattice $L$ with a zero 0 is called: a) a partially complemented lattice if each of its intervals of the form $[0,a]$, $a\in L$, is a complemented lattice; b) a weakly complemented lattice if for any $a,b\in L$ with $b\nleq a$ there is an element $c\in L$ such that $a\land c=0$ and $b\land c\neq0$; c) a semi-complemented lattice if for any $a\in L$, $a\neq1$, there is an element $b\in L$, $b\neq0$, such that $a\land b=0$; d) a pseudo-complemented lattice if for any $a\in L$ there is an element $a^*$ such that $a\land x=0$ if and only if $x\leq a^*$; and e) a quasi-complemented lattice if for any $x\in L$ there is an element $y\in L$ such that $x\land y=0$ and $x\lor y$ is a dense element. Ortho-complemented lattices also play an important role (see [[Orthomodular lattice|Orthomodular lattice]]). See [[#References|[4]]] for the relation between the various types of complements in lattices. |
| | | |
| ====References==== | | ====References==== |
Revision as of 10:30, 16 April 2014
complemented lattice
A lattice $L$ with a zero 0 and a unit 1 in which for any element $a$ there is an element $b$ (called a complement of the element $a$) such that $a\lor b=1$ and $a\land b=0$. If for any $a,b\in L$ with $a\leq b$ the interval $[a,b]$ is a complemented lattice, then $L$ is called a relatively complemented lattice. Each complemented modular lattice is a relatively complemented lattice. A lattice $L$ with a zero 0 is called: a) a partially complemented lattice if each of its intervals of the form $[0,a]$, $a\in L$, is a complemented lattice; b) a weakly complemented lattice if for any $a,b\in L$ with $b\nleq a$ there is an element $c\in L$ such that $a\land c=0$ and $b\land c\neq0$; c) a semi-complemented lattice if for any $a\in L$, $a\neq1$, there is an element $b\in L$, $b\neq0$, such that $a\land b=0$; d) a pseudo-complemented lattice if for any $a\in L$ there is an element $a^*$ such that $a\land x=0$ if and only if $x\leq a^*$; and e) a quasi-complemented lattice if for any $x\in L$ there is an element $y\in L$ such that $x\land y=0$ and $x\lor y$ is a dense element. Ortho-complemented lattices also play an important role (see Orthomodular lattice). See [4] for the relation between the various types of complements in lattices.
References
[1] | G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973) |
[2] | L.A. Skornyakov, "Elements of lattice theory" , A. Hilger (1977) (Translated from Russian) |
[3] | L.A. Skornyakov, "Complemented modular lattices and regular rings" , Oliver & Boyd (1964) (Translated from Russian) |
[4] | P.A. Grillet, J.C. Varlet, "Complementedness conditions in lattices" Bull Soc. Roy. Sci. Liège , 36 : 11–12 (1967) pp. 628–642 |
In a distributive lattice, each element has at most one complement; conversely, a lattice in which each element has at most one relative complement in each interval in which it lies must be distributive.
References
[a1] | L. Beran, "Orthomodular lattices" , Reidel (1985) |
[a2] | G. Grätzer, "Lattice theory" , Freeman (1971) |
[a3] | M.L. Dubreil-Jacotin, L. Lesieur, R. Croiset, "Leçons sur la théorie des treilles" , Gauthier-Villars (1953) |
How to Cite This Entry:
Lattice with complements. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lattice_with_complements&oldid=12763
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article