Difference between revisions of "Omega-consistency"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | '' | + | {{TEX|done}} |
+ | ''$\omega$-consistency'' | ||
− | The property of formal systems of arithmetic signifying the impossibility of obtaining | + | The property of formal systems of arithmetic signifying the impossibility of obtaining $\omega$-inconsistency. $\omega$-inconsistency is a situation in which, for some formula $A(x)$, each formula of the infinite sequence $A(\bar0),\ldots,A(\bar n),\ldots,$ and the formula $\neg\forall xA(x)$ are provable, where $\bar 0$ is a constant of the formal system signifying the number 0, while the constants $\bar n$ are defined recursively in terms of $(x)'$, signifying the number following directly after $x$: $\overline{n+1}=(\bar n)'$. |
− | The concept of | + | The concept of $\omega$-consistency appeared in conjunction with the [[Gödel incompleteness theorem|Gödel incompleteness theorem]] of arithmetic. Assuming the $\omega$-consistency of formal arithmetic, K. Gödel proved its incompleteness. The property of $\omega$-consistency is stronger than the property of simple [[Consistency|consistency]]. Simple consistency occurs if a formula not involving $x$ is taken as $A(x)$. It follows from Gödel's incompleteness theorem that there exist systems which are consistent but also $\omega$-inconsistent. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)</TD></TR></table> |
Revision as of 12:19, 12 April 2014
$\omega$-consistency
The property of formal systems of arithmetic signifying the impossibility of obtaining $\omega$-inconsistency. $\omega$-inconsistency is a situation in which, for some formula $A(x)$, each formula of the infinite sequence $A(\bar0),\ldots,A(\bar n),\ldots,$ and the formula $\neg\forall xA(x)$ are provable, where $\bar 0$ is a constant of the formal system signifying the number 0, while the constants $\bar n$ are defined recursively in terms of $(x)'$, signifying the number following directly after $x$: $\overline{n+1}=(\bar n)'$.
The concept of $\omega$-consistency appeared in conjunction with the Gödel incompleteness theorem of arithmetic. Assuming the $\omega$-consistency of formal arithmetic, K. Gödel proved its incompleteness. The property of $\omega$-consistency is stronger than the property of simple consistency. Simple consistency occurs if a formula not involving $x$ is taken as $A(x)$. It follows from Gödel's incompleteness theorem that there exist systems which are consistent but also $\omega$-inconsistent.
References
[1] | S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951) |
Omega-consistency. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Omega-consistency&oldid=14032