Difference between revisions of "Lommel function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex,MR,ZBL,MSC, refs) |
||
Line 1: | Line 1: | ||
− | + | {{MSC|34}} | |
+ | {{TEX|done}} | ||
− | + | A solution of the non-homogeneous | |
+ | [[Bessel equation|Bessel equation]] | ||
+ | $$x^2y''+xy'+(x^2-\nu^2)y = x^\rho.$$ | ||
+ | If $\rho = \nu+2n$, where $n$ is a natural number, then | ||
− | + | $$y=(-1)^{n-1}(n-1)!\; 2^{\nu+2n-2} \sum_{k=0}^{n-1} (-1)^k\big(\frac{x}{2}\big)^{\nu+2k} \frac{\def\G{\Gamma}\G(\nu+n)}{k!\G(\nu+k+1)}.$$ | |
− | + | If the numbers $\rho+\nu\ge 0$ and $\rho-\nu\ge 0$ are not integers, then | |
− | + | $$y=2^{\rho -2}\G(\frac{\rho+\nu}{2})\G(\frac{\rho-\nu}{2})\sum_{k=0}^\infty\frac{(-1)^k(x/2)^{\rho+2k}}{\G(k+1+(\rho+\nu)/2)\G(k+1+(\rho-\nu)/2)}.$$ | |
− | If | + | If $\rho = \nu-2n$, where $\nu\ge 0$ is an integer and $\nu$ is not an integer $\le n$, then |
− | + | $$y=\frac{\G(\nu-n)}{n!\; 2^{-\nu+2n+2}}\Big[2J_\nu(x)\ln\frac{x}{2}-\sum_{k=0}^{n-1}\frac{(n-k-1)!}{\G(\nu-n+k+1)}\big(\frac{x}{2}\big)^{\nu-2n+2k}-\sum_{k=0}^{\infty}\Big(\frac{(-1)^k(x/2)^{\nu+2k}}{k!\;\G(\nu+k+1)}-\frac{\G'(k+1)}{\G(k+1)}-\frac{\G'(\nu+k+1)}{\G(\nu+k+1)}\Big)\Big].$$ | |
− | + | Here, for $n=0$ the first sum is taken to be zero, and $J_\nu(x)$ is a Bessel function (cf. | |
+ | [[Bessel functions|Bessel functions]]). Lommel functions in two variables are also known. | ||
− | + | See also | |
+ | [[Anger function|Anger function]]; | ||
+ | [[Weber function|Weber function]]; | ||
+ | [[Struve function|Struve function]]. | ||
− | + | Lommel functions were studied by E. Lommel | |
+ | {{Cite|Lo}}. | ||
− | + | ====References==== | |
+ | {| | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ka}}||valign="top"| E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden", '''1. Gewöhnliche Differentialgleichungen''', Chelsea, reprint (1947) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Lo}}||valign="top"| E. Lommel, "Zur Theorie der Bessel'schen Funktionen IV" ''Math. Ann.'', '''16''' (1880) pp. 183–208 {{MR|1510022}} JFM {{ZBL|12.0773.01}} JFM {{ZBL|12.0398.01}} | ||
− | + | |- | |
+ | |valign="top"|{{Ref|Wa}}||valign="top"| G.N. Watson, "A treatise on the theory of Bessel functions", '''1''', Cambridge Univ. Press (1952) {{MR|1349110}} {{MR|1570252}} {{MR|0010746}} {{MR|1520278}} {{ZBL|0849.33001}} {{ZBL|0174.36202}} {{ZBL|0063.08184}} JFM {{ZBL|48.0412.02}} JFM {{ZBL|50.0264.01}} | ||
− | + | |- | |
− | + | |} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 11:43, 21 February 2014
2020 Mathematics Subject Classification: Primary: 34-XX [MSN][ZBL]
A solution of the non-homogeneous Bessel equation $$x^2y''+xy'+(x^2-\nu^2)y = x^\rho.$$ If $\rho = \nu+2n$, where $n$ is a natural number, then
$$y=(-1)^{n-1}(n-1)!\; 2^{\nu+2n-2} \sum_{k=0}^{n-1} (-1)^k\big(\frac{x}{2}\big)^{\nu+2k} \frac{\def\G{\Gamma}\G(\nu+n)}{k!\G(\nu+k+1)}.$$
If the numbers $\rho+\nu\ge 0$ and $\rho-\nu\ge 0$ are not integers, then
$$y=2^{\rho -2}\G(\frac{\rho+\nu}{2})\G(\frac{\rho-\nu}{2})\sum_{k=0}^\infty\frac{(-1)^k(x/2)^{\rho+2k}}{\G(k+1+(\rho+\nu)/2)\G(k+1+(\rho-\nu)/2)}.$$
If $\rho = \nu-2n$, where $\nu\ge 0$ is an integer and $\nu$ is not an integer $\le n$, then
$$y=\frac{\G(\nu-n)}{n!\; 2^{-\nu+2n+2}}\Big[2J_\nu(x)\ln\frac{x}{2}-\sum_{k=0}^{n-1}\frac{(n-k-1)!}{\G(\nu-n+k+1)}\big(\frac{x}{2}\big)^{\nu-2n+2k}-\sum_{k=0}^{\infty}\Big(\frac{(-1)^k(x/2)^{\nu+2k}}{k!\;\G(\nu+k+1)}-\frac{\G'(k+1)}{\G(k+1)}-\frac{\G'(\nu+k+1)}{\G(\nu+k+1)}\Big)\Big].$$
Here, for $n=0$ the first sum is taken to be zero, and $J_\nu(x)$ is a Bessel function (cf. Bessel functions). Lommel functions in two variables are also known.
See also Anger function; Weber function; Struve function.
Lommel functions were studied by E. Lommel [Lo].
References
[Ka] | E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden", 1. Gewöhnliche Differentialgleichungen, Chelsea, reprint (1947) |
[Lo] | E. Lommel, "Zur Theorie der Bessel'schen Funktionen IV" Math. Ann., 16 (1880) pp. 183–208 MR1510022 JFM Zbl 12.0773.01 JFM Zbl 12.0398.01 |
[Wa] | G.N. Watson, "A treatise on the theory of Bessel functions", 1, Cambridge Univ. Press (1952) MR1349110 MR1570252 MR0010746 MR1520278 Zbl 0849.33001 Zbl 0174.36202 Zbl 0063.08184 JFM Zbl 48.0412.02 JFM Zbl 50.0264.01 |
Lommel function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lommel_function&oldid=12539