Difference between revisions of "Du Bois-Reymond criterion (convergence of series)"
From Encyclopedia of Mathematics
(Importing text file) |
|||
Line 1: | Line 1: | ||
− | + | {{MSC|40A05}} | |
+ | {{TEX|done}} | ||
+ | A criterion for the convergence of series of complex numbers, established by P. du Bois-Reymond. | ||
− | + | If the series of complex numbers $\sum_n b_n$ converges and the series of complex numbers $\sum_n (a_n-a_{n+1})$ converges absolutely, then the series $\sum_n a_n b_n$ converges. | |
− | |||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Kn}}|| K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) | ||
+ | |- | ||
+ | |} |
Latest revision as of 13:16, 10 December 2013
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
A criterion for the convergence of series of complex numbers, established by P. du Bois-Reymond.
If the series of complex numbers $\sum_n b_n$ converges and the series of complex numbers $\sum_n (a_n-a_{n+1})$ converges absolutely, then the series $\sum_n a_n b_n$ converges.
References
[Kn] | K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) |
How to Cite This Entry:
Du Bois-Reymond criterion (convergence of series). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Du_Bois-Reymond_criterion_(convergence_of_series)&oldid=11426
Du Bois-Reymond criterion (convergence of series). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Du_Bois-Reymond_criterion_(convergence_of_series)&oldid=11426
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article