Namespaces
Variants
Actions

Difference between revisions of "Raabe criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
''on the convergence of a series of numbers''
+
{{MSC|40A05}}
 +
{{TEX|done}}
  
A series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770101.png" /> converges if for sufficiently large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770102.png" /> the inequality
+
''on the convergence of a series of complex numbers''
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770103.png" /></td> </tr></table>
 
 
 
is fulfilled. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770104.png" /> from some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077010/r0770105.png" /> onwards, then the series diverges.
 
 
 
Proved by J. Raabe
 
 
 
 
 
 
 
====Comments====
 
  
 +
A criterion for the convergence of series of complex numbers $\sum_n a_n$, proved by J. Raabe. If $a_n \neq 0$ and there is a number $R>1$ such that for sufficiently large $n$ the inequality
 +
\begin{equation}
 +
\frac{|a_{n+1}|}{|a_n|} \leq 1 - \frac{R}{n}
 +
\end{equation}
 +
holds, then $\sum_n a_n$ converges absolutely. If instead there is $N$ such that
 +
\[
 +
\frac{|a_{n+1}|}{|a_n|} \geq 1 - \frac{1}{n} \qquad \forall n \geq N\, ,
 +
\]
 +
then the series $\sum_n |a_n|$ diverges, which can be easily shown comparing it to the [[Harmonic series|harmonic series]]. However, the series itself might still converge, as can be seen taking
 +
\[
 +
\sum_n (-1)^n \frac{1}{\sqrt{n}}\, .
 +
\]
 +
The number $R$ is related to the limit
 +
\[
 +
\lim_{n\to \infty} n \left(1-\frac{|a_n|}{|a_{n+1}|}\right)
 +
\]
 +
and the criterion can therefore be compared to [[Gauss criterion|Gauss' criterion]]. Observe however that the [[Harmonic series|harmonic series]] $\sum \frac{1}{n}$ (which diverges) and the series $\sum \frac{1}{n (\log n)^2}$ (which converges) have both the property that
 +
\[
 +
\lim_{n\to \infty} n \left(1-\frac{a_n}{a_{n+1}}\right) = 1\, .
 +
\]
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Kn}}|| K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)
 +
|-
 +
|}

Latest revision as of 10:49, 10 December 2013

2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]

on the convergence of a series of complex numbers

A criterion for the convergence of series of complex numbers $\sum_n a_n$, proved by J. Raabe. If $a_n \neq 0$ and there is a number $R>1$ such that for sufficiently large $n$ the inequality \begin{equation} \frac{|a_{n+1}|}{|a_n|} \leq 1 - \frac{R}{n} \end{equation} holds, then $\sum_n a_n$ converges absolutely. If instead there is $N$ such that \[ \frac{|a_{n+1}|}{|a_n|} \geq 1 - \frac{1}{n} \qquad \forall n \geq N\, , \] then the series $\sum_n |a_n|$ diverges, which can be easily shown comparing it to the harmonic series. However, the series itself might still converge, as can be seen taking \[ \sum_n (-1)^n \frac{1}{\sqrt{n}}\, . \] The number $R$ is related to the limit \[ \lim_{n\to \infty} n \left(1-\frac{|a_n|}{|a_{n+1}|}\right) \] and the criterion can therefore be compared to Gauss' criterion. Observe however that the harmonic series $\sum \frac{1}{n}$ (which diverges) and the series $\sum \frac{1}{n (\log n)^2}$ (which converges) have both the property that \[ \lim_{n\to \infty} n \left(1-\frac{a_n}{a_{n+1}}\right) = 1\, . \]

References

[Kn] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
How to Cite This Entry:
Raabe criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Raabe_criterion&oldid=12025
This article was adapted from an original article by E.G. Sobolevskaya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article