Difference between revisions of "Leibniz series"
From Encyclopedia of Mathematics
(Importing text file) |
m |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | {{MSC|40A05}} | ||
+ | {{TEX|done}} | ||
+ | |||
The alternating series | The alternating series | ||
− | + | \begin{equation} | |
− | + | 1-\frac13+\frac15-\frac17+\dots, | |
− | + | \end{equation} | |
− | which converges to | + | which converges to $\pi/4$. It was considered by G. Leibniz in 1673–1674. |
− | |||
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Kn}}|| K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) | ||
+ | |- | ||
+ | |} |
Latest revision as of 20:19, 9 December 2013
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
The alternating series \begin{equation} 1-\frac13+\frac15-\frac17+\dots, \end{equation} which converges to $\pi/4$. It was considered by G. Leibniz in 1673–1674.
References
[Kn] | K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) |
How to Cite This Entry:
Leibniz series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leibniz_series&oldid=14430
Leibniz series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leibniz_series&oldid=14430
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article