Difference between revisions of "Leibniz criterion"
From Encyclopedia of Mathematics
(Importing text file) |
m |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | {{MSC|40A05}} | ||
+ | {{TEX|done}} | ||
+ | |||
''for convergence of an alternating series'' | ''for convergence of an alternating series'' | ||
If the terms of an alternating series | If the terms of an alternating series | ||
− | + | \begin{equation} | |
− | + | \sum_{n=1}^{\infty}(-1)^{n+1}a_n,\quad a_n>0, | |
− | + | \end{equation} | |
− | decrease monotonically ( | + | decrease monotonically ($a_n\geq a_{n+1}$, $n=1,2,\dots$) and tend to zero ( $\lim\limits_{n\to\infty}a_n=0$ ), then the series converges; moreover, a remainder of the series, |
− | + | \begin{equation} | |
− | + | \sum_{k=n+1}^{\infty}(-1)^{k+1}a_k, | |
− | + | \end{equation} | |
has the sign of its first term and is less than it in absolute value. The criterion was established by G. Leibniz in 1682. | has the sign of its first term and is less than it in absolute value. The criterion was established by G. Leibniz in 1682. | ||
− | + | ====Examples==== | |
− | ==== | + | * [[Leibniz_series|Leibniz series]] $\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}$. |
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Kn}}|| K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) | ||
+ | |- | ||
+ | |} |
Latest revision as of 20:16, 9 December 2013
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
for convergence of an alternating series
If the terms of an alternating series \begin{equation} \sum_{n=1}^{\infty}(-1)^{n+1}a_n,\quad a_n>0, \end{equation} decrease monotonically ($a_n\geq a_{n+1}$, $n=1,2,\dots$) and tend to zero ( $\lim\limits_{n\to\infty}a_n=0$ ), then the series converges; moreover, a remainder of the series, \begin{equation} \sum_{k=n+1}^{\infty}(-1)^{k+1}a_k, \end{equation} has the sign of its first term and is less than it in absolute value. The criterion was established by G. Leibniz in 1682.
Examples
- Leibniz series $\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}$.
References
[Kn] | K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) |
How to Cite This Entry:
Leibniz criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leibniz_criterion&oldid=18694
Leibniz criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leibniz_criterion&oldid=18694
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article