Difference between revisions of "D'Alembert criterion (convergence of series)"
(Importing text file) |
|||
Line 1: | Line 1: | ||
− | + | {{MSC|40A05}} | |
+ | {{TEX|done}} | ||
− | + | An elementary criterion to test the convergence of a series of real numbers, established by J. d'Alembert in 1768, | |
+ | and which is also known as ratio test. Consider such a series $\sum_n a_n$ and assume that $a_n \neq 0$. | ||
+ | * If | ||
+ | \[ | ||
+ | \limsup_{n\to \infty} \frac{|a_{n+1}|}{|a_n|} < 1 | ||
+ | \] | ||
+ | then the series converges absolutely | ||
+ | * If | ||
+ | \[ | ||
+ | \liminf_{n\to \infty} \frac{|a_{n+1}|}{|a_n|} > 1\, , | ||
+ | \] | ||
+ | then the series diverges. | ||
− | + | None of the conclusions can be extended to the equality case. In particular for both | |
+ | the [[Harmonic series|harmonic series]] | ||
+ | \[ | ||
+ | \sum_{n=1}^\infty \frac{1}{n} | ||
+ | \] | ||
+ | (which diverges) and the series | ||
+ | \[ | ||
+ | \sum_{n=1}^\infty \frac{1}{n^2}\, | ||
+ | \] | ||
+ | (which converges) one has | ||
+ | \[ | ||
+ | \lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = 1\, . | ||
+ | \] | ||
+ | A slight modification of these two examples provide also the following conclusions | ||
− | + | '''Example 1''' | |
+ | Let $\{N_k\}$ be an increasing sequence of natural numbers such that | ||
+ | \[ | ||
+ | \sum_{n=N_k+1}^{N_{k+1}} \frac{1}{n} \geq 2^k\, | ||
+ | \] | ||
+ | and set | ||
+ | \[ | ||
+ | a_n := \frac{1}{2^k n} \qquad \mbox{ for } N_k+1\leq n \leq N_{k+1}\, . | ||
+ | \] | ||
+ | It is easy to check that the series $\sum a_n$ diverges and | ||
+ | \[ | ||
+ | \liminf_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \frac{1}{2} < 1 = \limsup_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}\, . | ||
+ | \] | ||
− | + | '''Example 2''' | |
− | + | Let $\{N_k\}$ be an increasing sequence of natural numbers such that | |
− | + | \[ | |
− | + | \sum_{n>N_k}^\infty \frac{1}{n^2} < 3^{-n}\, | |
− | + | \] | |
− | + | and set | |
− | + | \[ | |
− | + | a_n = \frac{2^k}{n^2} \qquad \mbox{ for } N_k+1\leq n \leq N_{k+1}\, . | |
− | + | \] | |
− | + | It is easy to check that the series $\sum a_n$ converges and | |
− | + | \[ | |
− | + | \liminf_{n\to\infty} \frac{|a_n|}{|a_{n+1}|} = 1 < \limsup_{n\to\infty} \frac{|a_n|}{|a_{n+1}|} = 2\, . | |
− | + | \] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Ru}}|| W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976) | ||
+ | |- | ||
+ | |} |
Revision as of 18:50, 9 December 2013
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
An elementary criterion to test the convergence of a series of real numbers, established by J. d'Alembert in 1768, and which is also known as ratio test. Consider such a series $\sum_n a_n$ and assume that $a_n \neq 0$.
- If
\[ \limsup_{n\to \infty} \frac{|a_{n+1}|}{|a_n|} < 1 \] then the series converges absolutely
- If
\[ \liminf_{n\to \infty} \frac{|a_{n+1}|}{|a_n|} > 1\, , \] then the series diverges.
None of the conclusions can be extended to the equality case. In particular for both the harmonic series \[ \sum_{n=1}^\infty \frac{1}{n} \] (which diverges) and the series \[ \sum_{n=1}^\infty \frac{1}{n^2}\, \] (which converges) one has \[ \lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = 1\, . \] A slight modification of these two examples provide also the following conclusions
Example 1 Let $\{N_k\}$ be an increasing sequence of natural numbers such that \[ \sum_{n=N_k+1}^{N_{k+1}} \frac{1}{n} \geq 2^k\, \] and set \[ a_n := \frac{1}{2^k n} \qquad \mbox{ for } N_k+1\leq n \leq N_{k+1}\, . \] It is easy to check that the series $\sum a_n$ diverges and \[ \liminf_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \frac{1}{2} < 1 = \limsup_{n\to\infty} \frac{|a_{n+1}|}{|a_n|}\, . \]
Example 2 Let $\{N_k\}$ be an increasing sequence of natural numbers such that \[ \sum_{n>N_k}^\infty \frac{1}{n^2} < 3^{-n}\, \] and set \[ a_n = \frac{2^k}{n^2} \qquad \mbox{ for } N_k+1\leq n \leq N_{k+1}\, . \] It is easy to check that the series $\sum a_n$ converges and \[ \liminf_{n\to\infty} \frac{|a_n|}{|a_{n+1}|} = 1 < \limsup_{n\to\infty} \frac{|a_n|}{|a_{n+1}|} = 2\, . \]
References
[Ru] | W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976) |
D'Alembert criterion (convergence of series). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=D%27Alembert_criterion_(convergence_of_series)&oldid=14634