|
|
Line 1: |
Line 1: |
− | A finite-dimensional associative algebra over a commutative ring; it was first investigated by W. Clifford in 1876. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224601.png" /> be a commutative ring with an identity, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224602.png" /> be a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224603.png" />-module and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224604.png" /> be a quadratic form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224605.png" />. By the Clifford algebra of the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224606.png" /> (or of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224607.png" />) one means the quotient algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224608.png" /> of the tensor algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c0224609.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246010.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246011.png" /> by the two-sided ideal generated by the elements of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246013.png" />. Elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246014.png" /> are identified with their corresponding cosets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246015.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246016.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246018.png" /> is the symmetric bilinear form associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246019.png" />.
| + | {{MSC|15A66}} |
| + | {{TEX|done}} |
| | | |
− | For the case of the null quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246021.png" /> is the same as the [[Exterior algebra|exterior algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246024.png" />, the field of real numbers, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246025.png" /> is a non-degenerate quadratic form on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246026.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246027.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246028.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246029.png" /> is the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246030.png" /> of alternions, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246031.png" /> is the number of positive squares in the canonical form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246032.png" /> (cf. [[Alternion|Alternion]]).
| + | The ''Clifford algebra'' of a [[quadratic form]] is |
| + | a finite-dimensional associative algebra over a commutative ring; it was first investigated by W. Clifford in 1876. Let $K$ be a commutative ring with an identity, let $E$ be a free $K$-module and let $Q$ be a quadratic form on $E$. By the Clifford algebra of the quadratic form $Q$ (or of the pair $(E,Q)$) one means the quotient algebra $C(Q)$ of the tensor algebra $T(E)$ of the $K$-module $E$ by the two-sided ideal generated by the elements of the form $x\otimes x-Q(x)\cdot 1$, where $x\in E$. Elements of $E$ are identified with their corresponding cosets in $C(Q)$. For any $x,y\in E$ one has $xy+yx=\Phi(x,y)$, where $\Phi(E\times E)\to K$ is the symmetric bilinear form associated with $Q$. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246033.png" /> be a basis of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246034.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246035.png" />. Then the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246036.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246037.png" /> form a basis of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246038.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246039.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246040.png" /> is a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246041.png" />-module of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246042.png" />. If in addition the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246043.png" /> are orthogonal with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246044.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246045.png" /> can be presented as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246046.png" />-algebra with generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246047.png" /> and relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246048.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246050.png" />. The submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246051.png" /> generated by products of an even number of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246052.png" /> forms a subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246053.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246054.png" />.
| + | For the case of the null quadratic form $Q$, $C(Q)$ is the same as the |
| + | [[Exterior algebra|exterior algebra]] $\Lambda(E)$ of $E$. If $K=\R$, the field of real numbers, and $Q$ is a non-degenerate quadratic form on the $n$-dimensional vector space $E$ over $\R$, then $C(G)$ is the algebra ${}^lA_{n+1}$ of alternions, where $l$ is the number of positive squares in the canonical form of $Q$ (cf. |
| + | [[Alternion|Alternion]]). |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246055.png" /> is a field and that the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246056.png" /> is non-degenerate. For even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246058.png" /> is a [[Central simple algebra|central simple algebra]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246059.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246060.png" />, the subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246061.png" /> is separable, and its centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246062.png" /> has dimension 2 over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246063.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246064.png" /> is algebraically closed, then when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246065.png" /> is even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246066.png" /> is a matrix algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246067.png" /> is a product of two matrix algebras. (If, on the other hand, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246068.png" /> is odd, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246069.png" /> is a matrix algebra and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246070.png" /> is a product of two matrix algebras.)
| + | Let $e_1,\dots,e_n$ be a basis of the $K$-module $E$. Then the |
| + | elements $1, e_{i_1}\cdots e_{i_k}\; (i_1<\cdots < i_k)$ form a basis |
| + | of the $K$-module $C(Q)$. In particular, $C(Q)$ is a free $K$-module |
| + | of rank $2^n$. If in addition the $e_1,\dots,e_n$ are orthogonal with |
| + | respect to $Q$, then $C(Q)$ can be presented as a $K$-algebra with |
| + | generators $1,e_1,\dots,e_n$ and relations $e_i e_j = -e_je_i\; (i\ne j)$ |
| + | and $e_i^2 = Q(e_i)$. The submodule of $C(Q)$ generated by products of an even number of elements of $E$ forms a subalgebra of $C(Q)$, denoted by $C^+(Q)$. |
| | | |
− | The invertible elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246071.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246072.png" /> (or of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246073.png" />) for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246074.png" /> form the Clifford group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246075.png" /> (or the special Clifford group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246076.png" />) of the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246077.png" />. The restriction of the transformation
| + | Suppose that $K$ is a field and that the quadratic form $Q$ is non-degenerate. For even $n$, $C(Q)$ is a |
| + | [[Central simple algebra|central simple algebra]] over $K$ of dimension $2^n$, the subalgebra $C^+(Q)$ is separable, and its centre $Z$ has dimension 2 over $K$. If $K$ is algebraically closed, then when $n$ is even $C(Q)$ is a matrix algebra and $C^+(Q)$ is a product of two matrix algebras. (If, on the other hand, $n$ is odd, then $C^+(Q)$ is a matrix algebra and $C(Q)$ is a product of two matrix algebras.) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246078.png" /></td> </tr></table>
| + | The invertible elements $s$ of $C(Q)$ (or of $C^+(Q)$) for which $sEs^{-1} = E$ form the Clifford group $G(Q)$ (or the special Clifford group $G^+(Q)$) of the quadratic form $Q$. The restriction of the transformation |
| | | |
− | to the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246079.png" /> defines a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246080.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246081.png" /> is the [[Orthogonal group|orthogonal group]] of the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246082.png" />. The kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246083.png" /> consists of the invertible elements of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246084.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246085.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246086.png" /> is even, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246087.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246088.png" /> is a subgroup of index 2 in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246089.png" />, which in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246090.png" /> is not of characteristic 2, is the same as the special orthogonal group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246091.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246092.png" /> is odd, then | + | $$x\mapsto sxs^{-1}\quad (x\in G(Q))$$ |
| + | to the subspace $E$ defines a homomorphism $\def\phi{\varphi}\phi : G(Q)\to \def\O{ {\rm O}}\O(Q)$, where $\O(Q)$ is the |
| + | [[Orthogonal group|orthogonal group]] of the quadratic form $Q$. The |
| + | kernel $\def\Ker{ {\rm Ker}\;}\Ker \phi$ consists of the invertible elements of the algebra $Z$ and $(\Ker \phi)\cap G^+(Q) = k^*$. If $n$ is even, then $\phi(G(Q))=\O(G)$ and $\phi(G^+(Q))=\O^+(G)$ is a subgroup of index 2 in $\O(Q)$, which in the case when $K$ is not of characteristic 2, is the same as the special orthogonal group $\def\SO{ {\rm SO}}\SO(Q)$. If $n$ is odd, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246093.png" /></td> </tr></table>
| + | $$\phi(G(Q)) = \phi(G^+(Q)) = \SO(Q).$$ |
| + | Let $\beta : C(Q) \to C(Q)$ be the anti-automorphism of $C(Q)$ induced by the anti-automorphism |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246094.png" /> be the anti-automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246095.png" /> induced by the anti-automorphism
| + | $$x_1\otimes\cdots \otimes x_n \mapsto x_n\otimes\cdots \otimes x_1$$ |
| + | of the tensor algebra $T(E)$. The group |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246096.png" /></td> </tr></table>
| + | $$\def\Spin{ {\rm Spin}}\Spin(Q) = \{s\in G^+(Q) : \beta(s) = s^{-1} \}$$ |
| + | is called the spinor group of the quadratic form $Q$ (or of the Clifford algebra $C(Q)$). |
| | | |
− | of the tensor algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246097.png" />. The group
| + | The homomorphism $\phi: \Spin(Q) \to \O^+(Q) $ has kernel $\{\pm1\}$. If $K=\C$ or $K=\R$ and $Q$ is positive definite, then ${\rm Im}\;\phi : \O^+(Q) = \SO(Q)$ and $\Spin(Q)$ coincides with the classical |
| + | [[Spinor group|spinor group]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246098.png" /></td> </tr></table>
| + | ====Comments==== |
− | | + | The algebra $C^+(Q)$ generated by products of an even number of elements of the free $K$-module $E$ is also called the even Clifford algebra of the quadratic form $Q$. See also the articles |
− | is called the spinor group of the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c02246099.png" /> (or of the Clifford algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460100.png" />). | + | [[Exterior algebra|Exterior algebra]] (or Grassmann algebra), and |
− | | + | [[Cartan method of exterior forms|Cartan method of exterior forms]] for more details in the case $Q=0$. |
− | The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460101.png" /> has kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460102.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460103.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460105.png" /> is positive definite, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460107.png" /> coincides with the classical [[Spinor group|spinor group]].
| |
| | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics" , Addison-Wesley (1966–1977) (Translated from French) {{MR|2333539}} {{MR|2327161}} {{MR|2325344}} {{MR|2284892}} {{MR|2272929}} {{MR|0928386}} {{MR|0896478}} {{MR|0782297}} {{MR|0782296}} {{MR|0722608}} {{MR|0682756}} {{MR|0643362}} {{MR|0647314}} {{MR|0610795}} {{MR|0583191}} {{MR|0354207}} {{MR|0360549}} {{MR|0237342}} {{MR|0205211}} {{MR|0205210}} {{ZBL|05948094}} {{ZBL|1145.17002}} {{ZBL|1145.17001}} {{ZBL|1116.28002}} {{ZBL|1108.26003}} {{ZBL|1106.46005}} {{ZBL|1107.01001}} {{ZBL|1106.46006}} {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1107.54001}} {{ZBL|1123.22005}} {{ZBL|1120.17002}} {{ZBL|1120.17001}} {{ZBL|1179.58001}} {{ZBL|1106.46004}} {{ZBL|1105.18001}} {{ZBL|1106.46003}} {{ZBL|1107.13002}} {{ZBL|1107.13001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1955) {{MR|}} {{ZBL|0221.20056}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian) {{MR|0412321}} {{ZBL|0342.22001}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Cartan, "Leçons sur la théorie des spineurs" , Hermann (1938) {{MR|}} {{ZBL|0022.17101}} {{ZBL|0019.36301}} {{ZBL|64.1382.04}} </TD></TR></table>
| |
| | | |
− |
| |
− |
| |
− | ====Comments====
| |
− | The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460108.png" /> generated by products of an even number of elements of the free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460109.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460110.png" /> is also called the even Clifford algebra of the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460111.png" />. See also the articles [[Exterior algebra|Exterior algebra]] (or Grassmann algebra), and [[Cartan method of exterior forms|Cartan method of exterior forms]] for more details in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022460/c022460112.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Chevalley, "The algebraic theory of spinors" , Columbia Univ. Press (1954) {{MR|0060497}} {{ZBL|0057.25901}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O.T. O'Meara, "Introduction to quadratic forms" , Springer (1973) {{MR|}} {{ZBL|0259.10018}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C. Chevalley, "The construction and study of certain important algebras" , Math. Soc. Japan (1955) pp. Chapt. III {{MR|0072867}} {{ZBL|}} </TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, Éléments de mathématique. Première partie: Les structures fondamentales de l'analyse. Livre II: Algèbre. Chapitre 9: Formes sesquilinéaires et formes quadratiques. Addison-Wesley (1966–1977) {{MR|0107661}} {{ZBL|0102.25503}} |
| + | |- |
| + | |valign="top"|{{Ref|Ca}}||valign="top"| E. Cartan, "Leçons sur la théorie des spineurs", Hermann (1938) {{MR|}} {{ZBL|0022.17101}} {{ZBL|0019.36301}} {{ZBL|64.1382.04}} |
| + | |- |
| + | |valign="top"|{{Ref|Ch}}||valign="top"| C. Chevalley, "The algebraic theory of spinors", Columbia Univ. Press (1954) {{MR|0060497}} {{ZBL|0057.25901}} |
| + | |- |
| + | |valign="top"|{{Ref|Ch2}}||valign="top"| C. Chevalley, "The construction and study of certain important algebras", Math. Soc. Japan (1955) pp. Chapt. III {{MR|0072867}} {{ZBL|}} |
| + | |- |
| + | |valign="top"|{{Ref|Ki}}||valign="top"| A.A. Kirillov, "Elements of the theory of representations", Springer (1976) (Translated from Russian) {{MR|0412321}} {{ZBL|0342.22001}} |
| + | |- |
| + | |valign="top"|{{Ref|OM}}||valign="top"| O.T. O'Meara, "Introduction to quadratic forms", Springer (1973) {{MR|}} {{ZBL|0259.10018}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 15A66 [MSN][ZBL]
The Clifford algebra of a quadratic form is
a finite-dimensional associative algebra over a commutative ring; it was first investigated by W. Clifford in 1876. Let $K$ be a commutative ring with an identity, let $E$ be a free $K$-module and let $Q$ be a quadratic form on $E$. By the Clifford algebra of the quadratic form $Q$ (or of the pair $(E,Q)$) one means the quotient algebra $C(Q)$ of the tensor algebra $T(E)$ of the $K$-module $E$ by the two-sided ideal generated by the elements of the form $x\otimes x-Q(x)\cdot 1$, where $x\in E$. Elements of $E$ are identified with their corresponding cosets in $C(Q)$. For any $x,y\in E$ one has $xy+yx=\Phi(x,y)$, where $\Phi(E\times E)\to K$ is the symmetric bilinear form associated with $Q$.
For the case of the null quadratic form $Q$, $C(Q)$ is the same as the
exterior algebra $\Lambda(E)$ of $E$. If $K=\R$, the field of real numbers, and $Q$ is a non-degenerate quadratic form on the $n$-dimensional vector space $E$ over $\R$, then $C(G)$ is the algebra ${}^lA_{n+1}$ of alternions, where $l$ is the number of positive squares in the canonical form of $Q$ (cf.
Alternion).
Let $e_1,\dots,e_n$ be a basis of the $K$-module $E$. Then the
elements $1, e_{i_1}\cdots e_{i_k}\; (i_1<\cdots < i_k)$ form a basis
of the $K$-module $C(Q)$. In particular, $C(Q)$ is a free $K$-module
of rank $2^n$. If in addition the $e_1,\dots,e_n$ are orthogonal with
respect to $Q$, then $C(Q)$ can be presented as a $K$-algebra with
generators $1,e_1,\dots,e_n$ and relations $e_i e_j = -e_je_i\; (i\ne j)$
and $e_i^2 = Q(e_i)$. The submodule of $C(Q)$ generated by products of an even number of elements of $E$ forms a subalgebra of $C(Q)$, denoted by $C^+(Q)$.
Suppose that $K$ is a field and that the quadratic form $Q$ is non-degenerate. For even $n$, $C(Q)$ is a
central simple algebra over $K$ of dimension $2^n$, the subalgebra $C^+(Q)$ is separable, and its centre $Z$ has dimension 2 over $K$. If $K$ is algebraically closed, then when $n$ is even $C(Q)$ is a matrix algebra and $C^+(Q)$ is a product of two matrix algebras. (If, on the other hand, $n$ is odd, then $C^+(Q)$ is a matrix algebra and $C(Q)$ is a product of two matrix algebras.)
The invertible elements $s$ of $C(Q)$ (or of $C^+(Q)$) for which $sEs^{-1} = E$ form the Clifford group $G(Q)$ (or the special Clifford group $G^+(Q)$) of the quadratic form $Q$. The restriction of the transformation
$$x\mapsto sxs^{-1}\quad (x\in G(Q))$$
to the subspace $E$ defines a homomorphism $\def\phi{\varphi}\phi : G(Q)\to \def\O{ {\rm O}}\O(Q)$, where $\O(Q)$ is the
orthogonal group of the quadratic form $Q$. The
kernel $\def\Ker{ {\rm Ker}\;}\Ker \phi$ consists of the invertible elements of the algebra $Z$ and $(\Ker \phi)\cap G^+(Q) = k^*$. If $n$ is even, then $\phi(G(Q))=\O(G)$ and $\phi(G^+(Q))=\O^+(G)$ is a subgroup of index 2 in $\O(Q)$, which in the case when $K$ is not of characteristic 2, is the same as the special orthogonal group $\def\SO{ {\rm SO}}\SO(Q)$. If $n$ is odd, then
$$\phi(G(Q)) = \phi(G^+(Q)) = \SO(Q).$$
Let $\beta : C(Q) \to C(Q)$ be the anti-automorphism of $C(Q)$ induced by the anti-automorphism
$$x_1\otimes\cdots \otimes x_n \mapsto x_n\otimes\cdots \otimes x_1$$
of the tensor algebra $T(E)$. The group
$$\def\Spin{ {\rm Spin}}\Spin(Q) = \{s\in G^+(Q) : \beta(s) = s^{-1} \}$$
is called the spinor group of the quadratic form $Q$ (or of the Clifford algebra $C(Q)$).
The homomorphism $\phi: \Spin(Q) \to \O^+(Q) $ has kernel $\{\pm1\}$. If $K=\C$ or $K=\R$ and $Q$ is positive definite, then ${\rm Im}\;\phi : \O^+(Q) = \SO(Q)$ and $\Spin(Q)$ coincides with the classical
spinor group.
The algebra $C^+(Q)$ generated by products of an even number of elements of the free $K$-module $E$ is also called the even Clifford algebra of the quadratic form $Q$. See also the articles
Exterior algebra (or Grassmann algebra), and
Cartan method of exterior forms for more details in the case $Q=0$.
References
[Bo] |
N. Bourbaki, Éléments de mathématique. Première partie: Les structures fondamentales de l'analyse. Livre II: Algèbre. Chapitre 9: Formes sesquilinéaires et formes quadratiques. Addison-Wesley (1966–1977) MR0107661 Zbl 0102.25503
|
[Ca] |
E. Cartan, "Leçons sur la théorie des spineurs", Hermann (1938) Zbl 0022.17101 Zbl 0019.36301 Zbl 64.1382.04
|
[Ch] |
C. Chevalley, "The algebraic theory of spinors", Columbia Univ. Press (1954) MR0060497 Zbl 0057.25901
|
[Ch2] |
C. Chevalley, "The construction and study of certain important algebras", Math. Soc. Japan (1955) pp. Chapt. III MR0072867
|
[Ki] |
A.A. Kirillov, "Elements of the theory of representations", Springer (1976) (Translated from Russian) MR0412321 Zbl 0342.22001
|
[OM] |
O.T. O'Meara, "Introduction to quadratic forms", Springer (1973) Zbl 0259.10018
|