|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | A linear algebraic group over some field, related to a semi-simple complex Lie algebra. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220901.png" /> be a [[Semi-simple algebra|semi-simple algebra]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220902.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220903.png" /> be its Cartan subalgebra, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220904.png" /> be a root system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220905.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220906.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220907.png" /> be a system of simple roots, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220908.png" /> be a Chevalley basis of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c0220909.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209010.png" /> be its linear envelope over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209011.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209012.png" /> be a faithful representation of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209013.png" /> in a finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209014.png" />. It turns out that there is a lattice in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209015.png" /> (i.e. a free Abelian subgroup a basis of which is the basis of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209016.png" />) which is invariant with respect to all operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209017.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209019.png" /> is a natural number). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209020.png" /> is an arbitrary field and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209021.png" />, then homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209023.png" />, are defined and are given by the formulas
| + | {{MSC|20}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209024.png" /></td> </tr></table>
| + | A ''Chevalley group'' is |
| + | a linear algebraic group over some field, related to a semi-simple |
| + | complex Lie algebra, in the following way: Let $\def\fg{ {\mathfrak g}}\fg$ be a |
| + | [[Lie algebra, semi-simple|semi-simple Lie algebra]] over $\C$, let $\def\fh{ |
| + | {\mathfrak h}}\fh$ be its [[Cartan subalgebra]], let $\def\S{\Sigma}\S$ be a |
| + | root system of $\fg$ with respect to $\fh$, let |
| + | $\def\a{\alpha}\{\a_1,\dots,\a_k\}\subset \S$ be a system of simple |
| + | roots, let $\{H_{\a_i} (1\le i\le k\}); X_\a (\a\in\S)\}$ be a |
| + | Chevalley basis of the algebra $\fg$, and let $\fg_\Z$ be its linear |
| + | envelope over $\Z$. Let $\def\phi{\varphi}\phi$ be a faithful |
| + | representation of the Lie algebra $\fg$ in a finite-dimensional vector |
| + | space $V$. It turns out that there is a lattice in $V$ (i.e. a free |
| + | Abelian subgroup a basis of which is the basis of the space $V$) which |
| + | is invariant with respect to all operators $\phi(X_\a)^m/m!$ |
| + | ($\a\in\S$, $m$ is a natural number). If $k$ is an arbitrary field and |
| + | if $V^k=M\otimes k$, then, for $\a\in\S$, homomorphisms $x_\a : k^+ \to |
| + | {\rm GL}(V^k)$ of the additive group $k^+$ of $k$ into ${\rm GL}(V^k)$ |
| + | are defined and given by the formulas |
| | | |
− | The subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209026.png" />, generate in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209027.png" /> some subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209028.png" />, which is called the Chevalley group related to the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209029.png" />, the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209030.png" /> and the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209031.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209032.png" /> (the adjoint representation), the Chevalley groups were defined by C. Chevalley in 1955 (see [[#References|[1]]]).
| + | $$x_\a(t) = \sum_{m=0}^\infty t^m\frac{\phi(X_\a)^m}{m!}.$$ |
| + | The subgroups $\def\fX{ {\rm X}}\fX_\a = {\rm Im}\; x_\a$, $\a\in\S$, generate in ${\rm GL}(V^k)$ some subgroup $G_k$, which is called the Chevalley group related to the Lie algebra $\fg$, the representation $\phi$ and the field $k$. If $\phi = {\rm ad}$ (the adjoint representation), the Chevalley groups were defined by C. Chevalley in 1955 (see |
| + | {{Cite|Ch}}). |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209033.png" /> is an algebraically closed field containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209034.png" />, then a Chevalley group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209035.png" /> is a connected semi-simple linear algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209036.png" />, defined and split over the prime subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209037.png" />. Its Lie algebra is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209038.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209039.png" /> is the commutator subgroup of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209040.png" /> of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209041.png" /> that are rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209042.png" />. Any connected semi-simple linear algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209043.png" /> is isomorphic to one of the Chevalley groups. The algebraic groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209044.png" /> (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209045.png" /> as abstract groups) depend only on the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209046.png" /> generated by the weights of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209048.png" /> coincides with the lattice of roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209049.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209050.png" /> is called the adjoint group, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209051.png" /> (the lattice of weights, see [[Lie group, semi-simple|Lie group, semi-simple]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209052.png" /> is called a universal or simply-connected group. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209053.png" /> is universal, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209054.png" />. | + | If $K$ is an algebraically closed field containing $k$, then a Chevalley group $G_K$ is a connected semi-simple linear algebraic group over $K$, defined and split over the prime subfield $k_0\subseteq k$. Its Lie algebra is isomorphic to $\fg_\Z\otimes K$. The group $G_k$ is the commutator subgroup of the group $G_K(k)$ of points of $G_K$ that are rational over $k$. Any connected semi-simple linear algebraic group over $K$ is isomorphic to one of the Chevalley groups. The algebraic groups $G_K$ (and $G_k$ as abstract groups) depend only on the lattice $\def\G{\Gamma}\G_\phi\subset \fh^*$ generated by the weights of the representation $\phi$. If $\G_\phi$ coincides with the lattice of roots $\G_0$, then $G_K$ is called the adjoint group, and if $\G_\phi=\G_1$ (the lattice of weights, see |
| + | [[Lie group, semi-simple|Lie group, semi-simple]]), then $G_K$ is called a universal or simply-connected group. If $G_K$ is universal, then $G_k=G_K(k)$. |
| | | |
− | The Chevalley group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209055.png" /> always coincides with its commutator subgroup. The centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209056.png" /> is finite. For example, the centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209057.png" /> of the universal group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209058.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209059.png" />, and the corresponding adjoint group is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209060.png" /> and has trivial centre. | + | The Chevalley group $G_K$ always coincides with its commutator subgroup. The centre of $G_K$ is finite. For example, the centre $Z$ of the universal group $G_K$ is isomorphic to ${\rm Hom}(\G_1/\G_0, k^*)$, and the corresponding adjoint group is isomorphic to $G_k/Z$ and has trivial centre. |
| | | |
− | If the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209061.png" /> is simple, then the adjoint Chevalley group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209062.png" /> is simple, except in the following cases: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209064.png" /> is a Lie algebra of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209065.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209066.png" />; or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209068.png" /> is a Lie algebra of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209069.png" />. Other series of simple groups can be obtained when considering the subgroups of fixed points of certain automorphisms of finite order of Chevalley groups (so-called torsion groups). | + | If the algebra $\fg$ is simple, then the adjoint Chevalley group $G_k$ is simple, except in the following cases: $|k| = 2$ and $\fg$ is a Lie algebra of type $A_1, B_2$ or $G_2$; or $|k| = 3$ and $\fg$ is a Lie algebra of type $A_1$. Other series of simple groups can be obtained when considering the subgroups of fixed points of certain automorphisms of finite order of Chevalley groups (so-called torsion groups). |
| | | |
− | If the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209070.png" /> is finite, then the order of the universal group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209071.png" /> can be computed by the formula | + | If the field $k$ is finite, then the order of the universal group $G_k$ can be computed by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209072.png" /></td> </tr></table>
| + | $$|G_k| = q^N \prod_{l=1}^r(q^{d_i} -1),$$ |
| + | where $q = |k|$, $d_i$ ($i=1,\dots,r$) are exponents of the Lie algebra $\fg$, i.e. the degrees of the free polynomials on $\fh$, generating the algebras, that are invariant with respect to the |
| + | [[Weyl group|Weyl group]], and $N=\sum_{i=1}^r(d_i - 1)$ is the number of positive roots. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209074.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209075.png" />) are exponents of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209076.png" />, i.e. the degrees of the free polynomials on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209077.png" />, generating the algebras, that are invariant with respect to the [[Weyl group|Weyl group]], and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209078.png" /> is the number of positive roots.
| + | There is a well-developed theory of rational linear representations of the Chevalley groups $G_k$ over an infinite field $k$. It is reduced to the case of an algebraically closed field, and in the latter case coincides with the theory of rational representations (cf. |
− | | + | [[Rational representation|Rational representation]]) of semi-simple algebraic groups. If $\fg$ is simple, $G_k$ is the universal Chevalley group over the infinite field $k$, and $\def\s{\sigma}\s$ is a non-trivial irreducible finite-dimensional representation of $G_k$ (as an abstract group) over an algebraically closed field $K$, then there exists a finite set of imbeddings $\phi_i:k\to K$ and a set of rational representations $\rho_i$ of the groups $G_{\phi_i}(k)$ such that $\s = \otimes_i\rho_i\circ \phi_i$. Concerning representations of Chevalley groups, see also |
− | There is a well-developed theory of rational linear representations of the Chevalley groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209079.png" /> over an infinite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209080.png" />. It is reduced to the case of an algebraically closed field, and in the latter case coincides with the theory of rational representations (cf. [[Rational representation|Rational representation]]) of semi-simple algebraic groups. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209081.png" /> is simple, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209082.png" /> is the universal Chevalley group over the infinite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209083.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209084.png" /> is a non-trivial irreducible finite-dimensional representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209085.png" /> (as an abstract group) over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209086.png" />, then there exists a finite set of imbeddings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209087.png" /> and a set of rational representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209088.png" /> of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209089.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209090.png" />. Concerning representations of Chevalley groups, see also [[#References|[2]]], [[#References|[3]]], [[#References|[5]]]. | + | {{Cite|St}}, |
− | | + | {{Cite|BoCaCuIwSpSt}}, |
− | ====References====
| + | {{Cite|Hu2}}. |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Chevalley, "Sur certains groupes simples" ''Tôhoku Math. J.'' , '''7''' : 1–2 (1955) pp. 14–66 {{MR|0073602}} {{ZBL|0066.01503}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.G. Steinberg, "Lectures on Chevalley groups" , Yale Univ. Press (1968) {{MR|0466335}} {{ZBL|1196.22001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Borel (ed.) R. Carter (ed.) C.W. Curtis (ed.) N. Iwahori (ed.) T.A. Springer (ed.) R. Steinberg (ed.) , ''Seminar on algebraic groups and related finite groups'' , ''Lect. notes in math.'' , '''131''' , Springer (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.E. Humphreys, "Introduction to Lie algebras and representation theory" , Springer (1972) {{MR|0323842}} {{ZBL|0254.17004}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.E. Humphreys, "Ordinary and modular representations of Chevalley groups" , Springer (1976) {{MR|0453884}} {{ZBL|0341.20037}} </TD></TR></table>
| |
− | | |
− | | |
− | | |
− | ====Comments====
| |
− | In the above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209091.png" /> denotes the characteristic of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022090/c02209092.png" />.
| |
− | | |
− | The torsion groups are also called the twisted Chevalley groups or the Steinberg groups. They were introduced by R. Steinberg in [[#References|[a1]]].
| |
− | | |
− | An important reference for the representation theory of Chevalley groups is the recent textbook by R.W. Carter [[#References|[a2]]].
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Steinberg, "Variations on a theme of Chevalley" ''Pacific J. Math.'' , '''9''' (1959) pp. 875–891 {{MR|0109191}} {{ZBL|0092.02505}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R.W. Carter, "Finite groups of Lie type: Conjugacy classes and complex characters" , Wiley (Interscience) (1985)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|BoCaCuIwSpSt}}||valign="top"| A. Borel (ed.) R. Carter (ed.) C.W. Curtis (ed.) N. Iwahori (ed.) T.A. Springer (ed.) R. Steinberg (ed.), ''Seminar on algebraic groups and related finite groups'', ''Lect. notes in math.'', '''131''', Springer (1970) {{MR|}} {{ZBL|0192.36201}} |
| + | |- |
| + | |valign="top"|{{Ref|Ca}}||valign="top"| R.W. Carter, "Finite groups of Lie type. Conjugacy classes and complex characters", Wiley (Interscience) (1985) {{MR|0794307}} {{ZBL|0567.20023}} |
| + | |- |
| + | |valign="top"|{{Ref|Ch}}||valign="top"| C. Chevalley, "Sur certains groupes simples" ''Tôhoku Math. J.'', '''7''' : 1–2 (1955) pp. 14–66 {{MR|0073602}} {{ZBL|0066.01503}} |
| + | |- |
| + | |valign="top"|{{Ref|Hu}}||valign="top"| J.E. Humphreys, "Introduction to Lie algebras and representation theory", Springer (1972) {{MR|0323842}} {{ZBL|0254.17004}} |
| + | |- |
| + | |valign="top"|{{Ref|Hu2}}||valign="top"| J.E. Humphreys, "Ordinary and modular representations of Chevalley groups", Springer (1976) {{MR|0453884}} {{ZBL|0341.20037}} |
| + | |- |
| + | |valign="top"|{{Ref|St}}||valign="top"| R.G. Steinberg, "Lectures on Chevalley groups", Yale Univ. Press (1968) {{MR|0466335}} {{ZBL|1196.22001}} |
| + | |- |
| + | |valign="top"|{{Ref|St2}}||valign="top"| R. Steinberg, "Variations on a theme of Chevalley" ''Pacific J. Math.'', '''9''' (1959) pp. 875–891 {{MR|0109191}} {{ZBL|0092.02505}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL]
A Chevalley group is
a linear algebraic group over some field, related to a semi-simple
complex Lie algebra, in the following way: Let $\def\fg{ {\mathfrak g}}\fg$ be a
semi-simple Lie algebra over $\C$, let $\def\fh{
{\mathfrak h}}\fh$ be its Cartan subalgebra, let $\def\S{\Sigma}\S$ be a
root system of $\fg$ with respect to $\fh$, let
$\def\a{\alpha}\{\a_1,\dots,\a_k\}\subset \S$ be a system of simple
roots, let $\{H_{\a_i} (1\le i\le k\}); X_\a (\a\in\S)\}$ be a
Chevalley basis of the algebra $\fg$, and let $\fg_\Z$ be its linear
envelope over $\Z$. Let $\def\phi{\varphi}\phi$ be a faithful
representation of the Lie algebra $\fg$ in a finite-dimensional vector
space $V$. It turns out that there is a lattice in $V$ (i.e. a free
Abelian subgroup a basis of which is the basis of the space $V$) which
is invariant with respect to all operators $\phi(X_\a)^m/m!$
($\a\in\S$, $m$ is a natural number). If $k$ is an arbitrary field and
if $V^k=M\otimes k$, then, for $\a\in\S$, homomorphisms $x_\a : k^+ \to
{\rm GL}(V^k)$ of the additive group $k^+$ of $k$ into ${\rm GL}(V^k)$
are defined and given by the formulas
$$x_\a(t) = \sum_{m=0}^\infty t^m\frac{\phi(X_\a)^m}{m!}.$$
The subgroups $\def\fX{ {\rm X}}\fX_\a = {\rm Im}\; x_\a$, $\a\in\S$, generate in ${\rm GL}(V^k)$ some subgroup $G_k$, which is called the Chevalley group related to the Lie algebra $\fg$, the representation $\phi$ and the field $k$. If $\phi = {\rm ad}$ (the adjoint representation), the Chevalley groups were defined by C. Chevalley in 1955 (see
[Ch]).
If $K$ is an algebraically closed field containing $k$, then a Chevalley group $G_K$ is a connected semi-simple linear algebraic group over $K$, defined and split over the prime subfield $k_0\subseteq k$. Its Lie algebra is isomorphic to $\fg_\Z\otimes K$. The group $G_k$ is the commutator subgroup of the group $G_K(k)$ of points of $G_K$ that are rational over $k$. Any connected semi-simple linear algebraic group over $K$ is isomorphic to one of the Chevalley groups. The algebraic groups $G_K$ (and $G_k$ as abstract groups) depend only on the lattice $\def\G{\Gamma}\G_\phi\subset \fh^*$ generated by the weights of the representation $\phi$. If $\G_\phi$ coincides with the lattice of roots $\G_0$, then $G_K$ is called the adjoint group, and if $\G_\phi=\G_1$ (the lattice of weights, see
Lie group, semi-simple), then $G_K$ is called a universal or simply-connected group. If $G_K$ is universal, then $G_k=G_K(k)$.
The Chevalley group $G_K$ always coincides with its commutator subgroup. The centre of $G_K$ is finite. For example, the centre $Z$ of the universal group $G_K$ is isomorphic to ${\rm Hom}(\G_1/\G_0, k^*)$, and the corresponding adjoint group is isomorphic to $G_k/Z$ and has trivial centre.
If the algebra $\fg$ is simple, then the adjoint Chevalley group $G_k$ is simple, except in the following cases: $|k| = 2$ and $\fg$ is a Lie algebra of type $A_1, B_2$ or $G_2$; or $|k| = 3$ and $\fg$ is a Lie algebra of type $A_1$. Other series of simple groups can be obtained when considering the subgroups of fixed points of certain automorphisms of finite order of Chevalley groups (so-called torsion groups).
If the field $k$ is finite, then the order of the universal group $G_k$ can be computed by the formula
$$|G_k| = q^N \prod_{l=1}^r(q^{d_i} -1),$$
where $q = |k|$, $d_i$ ($i=1,\dots,r$) are exponents of the Lie algebra $\fg$, i.e. the degrees of the free polynomials on $\fh$, generating the algebras, that are invariant with respect to the
Weyl group, and $N=\sum_{i=1}^r(d_i - 1)$ is the number of positive roots.
There is a well-developed theory of rational linear representations of the Chevalley groups $G_k$ over an infinite field $k$. It is reduced to the case of an algebraically closed field, and in the latter case coincides with the theory of rational representations (cf.
Rational representation) of semi-simple algebraic groups. If $\fg$ is simple, $G_k$ is the universal Chevalley group over the infinite field $k$, and $\def\s{\sigma}\s$ is a non-trivial irreducible finite-dimensional representation of $G_k$ (as an abstract group) over an algebraically closed field $K$, then there exists a finite set of imbeddings $\phi_i:k\to K$ and a set of rational representations $\rho_i$ of the groups $G_{\phi_i}(k)$ such that $\s = \otimes_i\rho_i\circ \phi_i$. Concerning representations of Chevalley groups, see also
[St],
[BoCaCuIwSpSt],
[Hu2].
References
[BoCaCuIwSpSt] |
A. Borel (ed.) R. Carter (ed.) C.W. Curtis (ed.) N. Iwahori (ed.) T.A. Springer (ed.) R. Steinberg (ed.), Seminar on algebraic groups and related finite groups, Lect. notes in math., 131, Springer (1970) Zbl 0192.36201
|
[Ca] |
R.W. Carter, "Finite groups of Lie type. Conjugacy classes and complex characters", Wiley (Interscience) (1985) MR0794307 Zbl 0567.20023
|
[Ch] |
C. Chevalley, "Sur certains groupes simples" Tôhoku Math. J., 7 : 1–2 (1955) pp. 14–66 MR0073602 Zbl 0066.01503
|
[Hu] |
J.E. Humphreys, "Introduction to Lie algebras and representation theory", Springer (1972) MR0323842 Zbl 0254.17004
|
[Hu2] |
J.E. Humphreys, "Ordinary and modular representations of Chevalley groups", Springer (1976) MR0453884 Zbl 0341.20037
|
[St] |
R.G. Steinberg, "Lectures on Chevalley groups", Yale Univ. Press (1968) MR0466335 Zbl 1196.22001
|
[St2] |
R. Steinberg, "Variations on a theme of Chevalley" Pacific J. Math., 9 (1959) pp. 875–891 MR0109191 Zbl 0092.02505
|