|
|
Line 1: |
Line 1: |
− | ''on a product of modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162501.png" />''
| + | {{MSC|15}} |
| + | {{TEX|done}} |
| | | |
− | A [[Bilinear mapping|bilinear mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162502.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162503.png" /> is a left unitary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162504.png" />-module, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162505.png" /> is a right unitary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162506.png" />-module, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162507.png" /> is a ring with a unit element, which is also regarded as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162508.png" />-bimodule. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b0162509.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625010.png" /> is a bilinear form on the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625011.png" />, and also that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625012.png" /> has a metric structure given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625013.png" />. Definitions involving bilinear mappings make sense also for bilinear forms. Thus, one speaks of the matrix of a bilinear form with respect to chosen bases in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625015.png" />, of the orthogonality of elements and submodules with respect to bilinear forms, of orthogonal direct sums, of non-degeneracy, etc. For instance, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625016.png" /> is a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625017.png" /> is a finite-dimensional vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625018.png" /> with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625019.png" />, then for the vectors
| + | ''on a product of modules $V\times W$'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625020.png" /></td> </tr></table>
| + | A |
| + | [[Bilinear mapping|bilinear mapping]] $f: V\times W\to A$, where $V$ is a left unitary $A$-module, $W$ is a right unitary $A$-module, and $A$ is a ring with a unit element, which is also regarded as an $(A<A)$-bimodule. If $V=W$, one says that $f$ is a bilinear form on the module $V$, and also that $V$ has a metric structure given by $f$. Definitions involving bilinear mappings make sense also for bilinear forms. Thus, one speaks of the matrix of a bilinear form with respect to chosen bases in $V$ and $W$, of the orthogonality of elements and submodules with respect to bilinear forms, of orthogonal direct sums, of non-degeneracy, etc. For instance, if $A$ is a field and $V=W$ is a finite-dimensional vector space over $A$ with basis $e_1,\dots,e_n$, then for the vectors |
| | | |
| + | $$v = v_1e_1+\cdots+v_ne_n$$ |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625021.png" /></td> </tr></table>
| + | $$w = w_1e_1+\cdots+w_ne_n$$ |
− | | |
| the value of the form will be | | the value of the form will be |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625022.png" /></td> </tr></table>
| + | $$f(v,w)=\sum_{i,j=1}^n a_{ij}v_iw_j,$$ |
− | | + | where $a_{ij} = f(e_i,e_j)$. The polynomial $\sum_{i,j=1}^n a_{ij}v_iw_j$ in the variables $v_1,\dots,v_n,w_1,\dots,w_n$ is sometimes identified with $f$ and is called a bilinear form on $V$. If the ring $A$ is commutative, a bilinear form is a special case of a |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625023.png" />. The polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625024.png" /> in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625025.png" /> is sometimes identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625026.png" /> and is called a bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625027.png" />. If the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625028.png" /> is commutative, a bilinear form is a special case of a [[Sesquilinear form|sesquilinear form]] (with the identity automorphism). | + | [[Sesquilinear form|sesquilinear form]] (with the identity automorphism). |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625029.png" /> be a commutative ring. A bilinear form on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625030.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625031.png" /> is said to be symmetric (or anti-symmetric or skew-symmetric) if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625032.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625033.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625034.png" />), and is said to be alternating if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625035.png" />. An alternating bilinear form is anti-symmetric; the converse is true only if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625036.png" /> it follows from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625037.png" /> that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625039.png" /> has a finite basis, symmetric (or anti-symmetric or alternating) forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625040.png" /> and only such forms have a symmetric (anti-symmetric, alternating) matrix in this basis. The orthogonality relation with respect to a symmetric or anti-symmetric form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625041.png" /> is symmetric.
| |
− | | |
− | A bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625042.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625043.png" /> is said to be isometric with a bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625044.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625045.png" /> if there exists an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625046.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625047.png" /> such that
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625048.png" /></td> </tr></table>
| |
− | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625049.png" />. This isomorphism is called an isometry of the form and, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625051.png" />, a metric automorphism of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625052.png" /> (or an automorphism of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625053.png" />). The metric automorphisms of a module form a group (the group of automorphisms of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625054.png" />); examples of such groups are the orthogonal group or the symplectic group.
| |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625055.png" /> be a skew-field and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625056.png" /> be a bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625057.png" />; let the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625059.png" /> be finite-dimensional over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625060.png" />; one then has
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625061.png" /></td> </tr></table>
| + | Let $A$ be a commutative ring. A bilinear form on an $A$-module $V$ is said to be symmetric (or anti-symmetric or skew-symmetric) if for all $v_1,v_2\in V$ one has $f(v_1,v_2) = f(v_2,v_1)$ (or $f(v_1,v_2) = -f(v_2,v_1)$), and is said to be alternating if $f(v,v)=0$. An alternating bilinear form is anti-symmetric; the converse is true only if for any $a\in A$ it follows from $2a=0$ that $a=0$. If $V$ has a finite basis, symmetric (or anti-symmetric or alternating) forms on $V$ and only such forms have a symmetric (anti-symmetric, alternating) matrix in this basis. The orthogonality relation with respect to a symmetric or anti-symmetric form on $V$ is symmetric. |
| | | |
− | and this number is called the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625062.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625063.png" /> is finite-dimensional and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625064.png" /> is non-degenerate, then
| + | A bilinear form $f$ on $V$ is said to be isometric with a bilinear form $g$ on $W$ if there exists an isomorphism of $A$-modules $\def\phi{\varphi}\phi:V\to W$ such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625065.png" /></td> </tr></table>
| + | $$g(\phi(v),\phi(w)) = f(v,w)$$ |
| + | for all $v\in V$. This isomorphism is called an isometry of the form and, if $V=W$ and $f=g$, a metric automorphism of the module $V$ (or an automorphism of the form $f$). The metric automorphisms of a module form a group (the group of automorphisms of the form $f$); examples of such groups are the orthogonal group or the symplectic group. |
| | | |
− | and for each basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625066.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625067.png" /> there exists a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625068.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625069.png" /> which is dual with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625070.png" />; it is defined by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625071.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625072.png" /> are the Kronecker symbols. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625073.png" />, then the submodules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625075.png" /> are said to be the right and the left kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625076.png" />, respectively; for symmetric and anti-symmetric forms the right and left kernels are identical and are simply referred to as the kernel. | + | Let $A$ be a skew-field and let $f$ be a bilinear form on $V\times W$; let the spaces $V/W^\perp$ and $W/V^\perp$ be finite-dimensional over $A$; one then has |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625077.png" /> be a symmetric or an anti-symmetric bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625078.png" />. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625079.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625080.png" /> is said to be an isotropic element; a submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625081.png" /> is said to be isotropic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625082.png" />, and totally isotropic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625083.png" />. Totally isotropic submodules play an important role in the study of the structure of bilinear forms (cf. [[Witt decomposition|Witt decomposition]]; [[Witt theorem|Witt theorem]]; [[Witt ring|Witt ring]]). See also [[Quadratic form|Quadratic form]] for the structure of bilinear forms.
| + | $$\dim V/W^\perp = \dim W/V^\perp$$ |
| + | and this number is called the rank of $f$. If $V$ is finite-dimensional and $f$ is non-degenerate, then |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625084.png" /> be commutative, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625085.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625086.png" />-module of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625087.png" />-linear mappings from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625088.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625089.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625090.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625091.png" />-module of all bilinear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625092.png" />. For every bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625093.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625094.png" /> and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625095.png" />, the formula
| + | $$\dim V = \dim W$$ |
| + | and for each basis $v_1,\dots,v_n$ in $V$ there exists a basis $w_1,\dots,w_n$ in $W$ which is dual with respect to $f$; it is defined by the condition $f(v_i,w_j)=\delta_{ij}$, where $\delta{ij}$ are the Kronecker symbols. If, in addition, $V=W$, then the submodules $V^\perp$ and $W^\perp$ are said to be the right and the left kernel of $f$, respectively; for symmetric and anti-symmetric forms the right and left kernels are identical and are simply referred to as the kernel. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625096.png" /></td> </tr></table>
| + | Let $f$ be a symmetric or an anti-symmetric bilinear form on $V$. An element $v\in V$ for which $f(v,v)=0$ is said to be an isotropic element; a submodule $M\subset V$ is said to be isotropic if $M\cap M^\perp \ne \{0\}$, and totally isotropic if $M\subset M^\perp$. Totally isotropic submodules play an important role in the study of the structure of bilinear forms (cf. |
| + | [[Witt decomposition|Witt decomposition]]; |
| + | [[Witt theorem|Witt theorem]]; |
| + | [[Witt ring|Witt ring]]). See also |
| + | [[Quadratic form|Quadratic form]] for the structure of bilinear forms. |
| | | |
− | defines an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625097.png" />-linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625098.png" />. Correspondingly, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b01625099.png" /> the formula
| + | Let $A$ be commutative, let $\def\Hom{ {\rm Hom}}\Hom_A(V,W)$ be the $A$-module of all $A$-linear mappings from $V$ into $W$, and let $L_2(V,W)$ be the $A$-module of all bilinear forms on $V\times W$. For every bilinear form $f$ on $V\times W$ and for each $v_0\in V$, the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250100.png" /></td> </tr></table>
| + | $$l_{f,v_0}(w) = f(v_0,w),\quad w\in W,$$ |
| + | defines an $A$-linear form on $W$. Correspondingly, for $w_0\in W$ the formula |
| | | |
− | defines an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250101.png" />-linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250102.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250103.png" /> is an element of | + | $$r_{f,w_0}(v) = f(v,w_0),\quad v\in V,$$ |
| + | defines an $A$-linear form on $V$. The mapping $l_f:v_0\mapsto l_{f,v_0}$ is an element of |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250104.png" /></td> </tr></table>
| + | $$\Hom_A(V,\Hom_A(W,A)).$$ |
| + | The mapping $r_f$ in |
| | | |
− | The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250105.png" /> in
| + | $$\Hom_A(W,\Hom_A(V,A)).$$ |
− | | + | is defined in a similar way. The mappings $f\mapsto l_f$ and $f\mapsto r_f$ define isomorphisms between the $A$-modules |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250106.png" /></td> </tr></table>
| |
− | | |
− | is defined in a similar way. The mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250107.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250108.png" /> define isomorphisms between the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250109.png" />-modules | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250110.png" /></td> </tr></table>
| |
| | | |
| + | $$L_2(V,W,A) \to \Hom_A(V,\Hom_A(W,A)$$ |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250111.png" /></td> </tr></table>
| + | $$L_2(V,W,A) \to \Hom_A(W,\Hom_A(V,A)$$ |
− | | + | A bilinear form $f$ is said to be left-non-singular (respectively, right-non-singular) if $l_f$ (respectively, $r_f$) is an isomorphism; if $f$ is both left- and right-non-singular, it is said to be non-singular; otherwise it is said to be singular. A non-degenerate bilinear form may be singular. For free modules $V$ and $W$ of the same finite dimension a bilinear form $f$ on $V\times W$ is non-singular if and only if the determinant of the matrix of $f$ with respect to any bases in $V$ and $W$ is an invertible element of the ring $A$. The following isomorphisms |
− | A bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250112.png" /> is said to be left-non-singular (respectively, right-non-singular) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250113.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250114.png" />) is an isomorphism; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250115.png" /> is both left- and right-non-singular, it is said to be non-singular; otherwise it is said to be singular. A non-degenerate bilinear form may be singular. For free modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250116.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250117.png" /> of the same finite dimension a bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250118.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250119.png" /> is non-singular if and only if the determinant of the matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250120.png" /> with respect to any bases in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250121.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250122.png" /> is an invertible element of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250123.png" />. The following isomorphisms | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250124.png" /></td> </tr></table>
| |
| | | |
| + | $$\Hom_A(V,V) \stackrel{l}{\to}L_2(V,W,A)$$ |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250125.png" /></td> </tr></table>
| + | $$\Hom_A(W,W) \stackrel{r}{\to}L_2(V,W,A),$$ |
− | | + | given by a non-singular bilinear form $f$, are defined by the formulas |
− | given by a non-singular bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250126.png" />, are defined by the formulas | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250127.png" /></td> </tr></table>
| |
| | | |
| + | $$l(\phi)(v,w) = f(\phi(v),w)$$ |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250128.png" /></td> </tr></table>
| + | $$r(\psi)(v,w) = f(v,\psi(w)).$$ |
− | | + | The endomorphisms $\phi\in \Hom_A(V,V)$ and $\psi\in \Hom_A(W,W)$ are said to be conjugate with respect to the form $f$ if $\psi = (r^{-1}\circ l)(\phi)$. |
− | The endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250129.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250130.png" /> are said to be conjugate with respect to the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250131.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016250/b016250132.png" />. | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Artin, "Geometric algebra" , Interscience (1957)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ar}}||valign="top"| E. Artin, "Geometric algebra", Interscience (1957) {{MR|1529733}} {{MR|0082463}} {{ZBL|0077.02101}} |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra", '''1''', Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) {{MR|0354207}} |
| + | |- |
| + | |valign="top"|{{Ref|La}}||valign="top"| S. Lang, "Algebra", |
| + | Addison-Wesley (1974) |
| + | {{MR|0277543}} {{ZBL|0984.00001}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 15-XX [MSN][ZBL]
on a product of modules $V\times W$
A
bilinear mapping $f: V\times W\to A$, where $V$ is a left unitary $A$-module, $W$ is a right unitary $A$-module, and $A$ is a ring with a unit element, which is also regarded as an $(A<A)$-bimodule. If $V=W$, one says that $f$ is a bilinear form on the module $V$, and also that $V$ has a metric structure given by $f$. Definitions involving bilinear mappings make sense also for bilinear forms. Thus, one speaks of the matrix of a bilinear form with respect to chosen bases in $V$ and $W$, of the orthogonality of elements and submodules with respect to bilinear forms, of orthogonal direct sums, of non-degeneracy, etc. For instance, if $A$ is a field and $V=W$ is a finite-dimensional vector space over $A$ with basis $e_1,\dots,e_n$, then for the vectors
$$v = v_1e_1+\cdots+v_ne_n$$
and
$$w = w_1e_1+\cdots+w_ne_n$$
the value of the form will be
$$f(v,w)=\sum_{i,j=1}^n a_{ij}v_iw_j,$$
where $a_{ij} = f(e_i,e_j)$. The polynomial $\sum_{i,j=1}^n a_{ij}v_iw_j$ in the variables $v_1,\dots,v_n,w_1,\dots,w_n$ is sometimes identified with $f$ and is called a bilinear form on $V$. If the ring $A$ is commutative, a bilinear form is a special case of a
sesquilinear form (with the identity automorphism).
Let $A$ be a commutative ring. A bilinear form on an $A$-module $V$ is said to be symmetric (or anti-symmetric or skew-symmetric) if for all $v_1,v_2\in V$ one has $f(v_1,v_2) = f(v_2,v_1)$ (or $f(v_1,v_2) = -f(v_2,v_1)$), and is said to be alternating if $f(v,v)=0$. An alternating bilinear form is anti-symmetric; the converse is true only if for any $a\in A$ it follows from $2a=0$ that $a=0$. If $V$ has a finite basis, symmetric (or anti-symmetric or alternating) forms on $V$ and only such forms have a symmetric (anti-symmetric, alternating) matrix in this basis. The orthogonality relation with respect to a symmetric or anti-symmetric form on $V$ is symmetric.
A bilinear form $f$ on $V$ is said to be isometric with a bilinear form $g$ on $W$ if there exists an isomorphism of $A$-modules $\def\phi{\varphi}\phi:V\to W$ such that
$$g(\phi(v),\phi(w)) = f(v,w)$$
for all $v\in V$. This isomorphism is called an isometry of the form and, if $V=W$ and $f=g$, a metric automorphism of the module $V$ (or an automorphism of the form $f$). The metric automorphisms of a module form a group (the group of automorphisms of the form $f$); examples of such groups are the orthogonal group or the symplectic group.
Let $A$ be a skew-field and let $f$ be a bilinear form on $V\times W$; let the spaces $V/W^\perp$ and $W/V^\perp$ be finite-dimensional over $A$; one then has
$$\dim V/W^\perp = \dim W/V^\perp$$
and this number is called the rank of $f$. If $V$ is finite-dimensional and $f$ is non-degenerate, then
$$\dim V = \dim W$$
and for each basis $v_1,\dots,v_n$ in $V$ there exists a basis $w_1,\dots,w_n$ in $W$ which is dual with respect to $f$; it is defined by the condition $f(v_i,w_j)=\delta_{ij}$, where $\delta{ij}$ are the Kronecker symbols. If, in addition, $V=W$, then the submodules $V^\perp$ and $W^\perp$ are said to be the right and the left kernel of $f$, respectively; for symmetric and anti-symmetric forms the right and left kernels are identical and are simply referred to as the kernel.
Let $f$ be a symmetric or an anti-symmetric bilinear form on $V$. An element $v\in V$ for which $f(v,v)=0$ is said to be an isotropic element; a submodule $M\subset V$ is said to be isotropic if $M\cap M^\perp \ne \{0\}$, and totally isotropic if $M\subset M^\perp$. Totally isotropic submodules play an important role in the study of the structure of bilinear forms (cf.
Witt decomposition;
Witt theorem;
Witt ring). See also
Quadratic form for the structure of bilinear forms.
Let $A$ be commutative, let $\def\Hom{ {\rm Hom}}\Hom_A(V,W)$ be the $A$-module of all $A$-linear mappings from $V$ into $W$, and let $L_2(V,W)$ be the $A$-module of all bilinear forms on $V\times W$. For every bilinear form $f$ on $V\times W$ and for each $v_0\in V$, the formula
$$l_{f,v_0}(w) = f(v_0,w),\quad w\in W,$$
defines an $A$-linear form on $W$. Correspondingly, for $w_0\in W$ the formula
$$r_{f,w_0}(v) = f(v,w_0),\quad v\in V,$$
defines an $A$-linear form on $V$. The mapping $l_f:v_0\mapsto l_{f,v_0}$ is an element of
$$\Hom_A(V,\Hom_A(W,A)).$$
The mapping $r_f$ in
$$\Hom_A(W,\Hom_A(V,A)).$$
is defined in a similar way. The mappings $f\mapsto l_f$ and $f\mapsto r_f$ define isomorphisms between the $A$-modules
$$L_2(V,W,A) \to \Hom_A(V,\Hom_A(W,A)$$
and
$$L_2(V,W,A) \to \Hom_A(W,\Hom_A(V,A)$$
A bilinear form $f$ is said to be left-non-singular (respectively, right-non-singular) if $l_f$ (respectively, $r_f$) is an isomorphism; if $f$ is both left- and right-non-singular, it is said to be non-singular; otherwise it is said to be singular. A non-degenerate bilinear form may be singular. For free modules $V$ and $W$ of the same finite dimension a bilinear form $f$ on $V\times W$ is non-singular if and only if the determinant of the matrix of $f$ with respect to any bases in $V$ and $W$ is an invertible element of the ring $A$. The following isomorphisms
$$\Hom_A(V,V) \stackrel{l}{\to}L_2(V,W,A)$$
and
$$\Hom_A(W,W) \stackrel{r}{\to}L_2(V,W,A),$$
given by a non-singular bilinear form $f$, are defined by the formulas
$$l(\phi)(v,w) = f(\phi(v),w)$$
and
$$r(\psi)(v,w) = f(v,\psi(w)).$$
The endomorphisms $\phi\in \Hom_A(V,V)$ and $\psi\in \Hom_A(W,W)$ are said to be conjugate with respect to the form $f$ if $\psi = (r^{-1}\circ l)(\phi)$.
References
[Ar] |
E. Artin, "Geometric algebra", Interscience (1957) MR1529733 MR0082463 Zbl 0077.02101
|
[Bo] |
N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra", 1, Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) MR0354207
|
[La] |
S. Lang, "Algebra",
Addison-Wesley (1974)
MR0277543 Zbl 0984.00001
|