Difference between revisions of "Quasi-metric"
From Encyclopedia of Mathematics
(Created page with "Let $\mathbb X$ is a nonempty set. A function $d:\mathbb{X}\times\mathbb{X}\to[0,\infty)$ which satisfies following conditions for all $x,y\in\mathbb X$ 1) $d(x,y)=0$ if an...") |
(References are added) |
||
Line 9: | Line 9: | ||
The difference between [[Metric | metric]] and quasi-metric is that quasi-metric does not possess the symmetry axiom (in the case we allow $d(x,y)\ne d(y,x)$ for some $x,y\in \mathbb X$ ). | The difference between [[Metric | metric]] and quasi-metric is that quasi-metric does not possess the symmetry axiom (in the case we allow $d(x,y)\ne d(y,x)$ for some $x,y\in \mathbb X$ ). | ||
+ | |||
+ | |||
+ | ===Reference=== | ||
+ | {| | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Sch}}|| V. Schroeder, "Quasi-metric and metric spaces". Conform. Geom. Dyn. 10, 355 - 360 (2006) {{ZBL|1113.54014}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Wil}}|| W. A. Wilson, "On Quasi-Metric Spaces". American Journal of Mathematics | ||
+ | Vol. 53, No. 3 (1931), pp. 675-684 {{ZBL|0002.05503}} | ||
+ | |- | ||
+ | |} |
Revision as of 08:24, 7 December 2012
Let $\mathbb X$ is a nonempty set. A function $d:\mathbb{X}\times\mathbb{X}\to[0,\infty)$ which satisfies following conditions for all $x,y\in\mathbb X$
1) $d(x,y)=0$ if and only if $x = y$ (the identity axiom);
2) $d(x,y) + \rho(y,z) \geq d(x,z)$ (the triangle axiom);
is called quasi-metric. A pair $(\mathbb X, d)$ is quasi-metric space.
The difference between metric and quasi-metric is that quasi-metric does not possess the symmetry axiom (in the case we allow $d(x,y)\ne d(y,x)$ for some $x,y\in \mathbb X$ ).
Reference
[Sch] | V. Schroeder, "Quasi-metric and metric spaces". Conform. Geom. Dyn. 10, 355 - 360 (2006) Zbl 1113.54014 |
[Wil] | W. A. Wilson, "On Quasi-Metric Spaces". American Journal of Mathematics
Vol. 53, No. 3 (1931), pp. 675-684 Zbl 0002.05503 |
How to Cite This Entry:
Quasi-metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-metric&oldid=29108
Quasi-metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-metric&oldid=29108