Difference between revisions of "User:Matteo.focardi/sandbox"
(29 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
− | + | [[Category:Linear and multilinear algebra; matrix theory]] | |
− | + | {{MSC|15Axx|}} | |
− | [[Category: | ||
− | |||
{{TEX|done}} | {{TEX|done}} | ||
− | A | + | A formula aimed at expressing the determinant of the product of two matrices $A\in\mathrm{M}_{m,n}(\mathbb{R})$ |
− | + | and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order minors | |
− | + | of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$ | |
− | + | denotes any [[Multiindex|multi-index]] $(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$ of length $m$, then | |
− | + | \[ | |
− | + | \det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha}, | |
− | + | \] | |
− | + | where $A_{\alpha\,\beta}=(a_{\alpha_i\beta_j})$ and $B_{\beta\,\alpha}=(a_{\beta_j\alpha_i})$. | |
− | + | In case $m>n$, no such $\beta$ exists and the right-hand side above is set to be $0$ by definition. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | Note that if $n=m$ the formula reduces to | ||
+ | \[ | ||
+ | \det (AB)=\det A\,\det B. | ||
+ | \] | ||
+ | More generally, if $A\in\mathrm{M}_{m,n}(\mathbb{R})$, $B\in\mathrm{M}_{n,q}(\mathbb{R})$ | ||
+ | and $p\leq\min\{m,q\}$, then any minor of order $p$ of the product matrix $AB$ can be expressed | ||
+ | as follows by Cauchy-Binet's formula | ||
+ | \[ | ||
+ | \det((AB)_{\alpha\,\gamma})=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\gamma}, | ||
+ | \] | ||
+ | where $\alpha=(\alpha_1\ldots,\alpha_p)$ with $1\leq\alpha_1<\ldots<\alpha_p\leq m$, | ||
+ | $\gamma=(\gamma_1,\ldots,\gamma_p)$ with $1\leq\gamma_1<\ldots<\gamma_p\leq q$, and | ||
+ | $\beta=(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$. | ||
− | + | A number of interesting consequence of Cauchy-Binet's formula is listed below. | |
− | + | First of all, an inequality for the [[Rank|rank]] of the product matrix | |
− | + | follows straightforwardly, i.e., | |
− | + | \[ | |
+ | \mathrm{rank}(AB)\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}. | ||
+ | \] | ||
+ | Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors, | ||
+ | by taking | ||
+ | $$A=\begin{pmatrix} | ||
+ | a_{1}&\dots&a_{n}\\ | ||
+ | b_{1}&\dots&b_{n}\\ | ||
+ | \end{pmatrix} | ||
+ | \quad\text{and}\quad | ||
+ | B=\begin{pmatrix} | ||
+ | a_{1}&b_{1}\\ | ||
+ | \dots&\dots\\ | ||
+ | a_{n}&b_{n}\\ | ||
+ | \end{pmatrix} | ||
+ | $$ | ||
+ | Cauchy-Binet's formula yields | ||
+ | \[ | ||
+ | \sum_{1\leq i<j\leq n}\begin{vmatrix} | ||
+ | a_{i}&a_{j}\\ | ||
+ | b_{i}&b_{j}\\ | ||
+ | \end{vmatrix}^2= | ||
+ | \begin{vmatrix} | ||
+ | \|\mathbf{a}\|^2&\langle\mathbf{a},\mathbf{b}\rangle\\ | ||
+ | \langle\mathbf{a}, \mathbf{b}\rangle&\|\mathbf{b}\|^2\\ | ||
+ | \end{vmatrix}, | ||
+ | \] | ||
+ | in turn implying Cauchy-Schwartz's inequality. Here, $\|\cdot\|$ and | ||
+ | $\langle\cdot,\cdot\rangle$ are the Euclidean norm and scalar product, respectively. | ||
+ | Let us finally interpret geometrically the result. Take $B=A^T$, then | ||
+ | $\det(A_{\alpha\beta})=\det(A^T_{\beta,\alpha})$, so that by Cauchy-Binet's formula | ||
+ | \[\label{p} | ||
+ | \det(A^T\,A)=\sum_\beta(\det(A_{\alpha\beta}))^2. | ||
+ | \] | ||
+ | This is a generalization of the Pythagorean formula, corresponding to $m=1$. Indeed, | ||
+ | if $\mathcal{B}:\mathbb{R}^n\to\mathbb{R}^m$ is the linear map associated to $A^T$, | ||
+ | and $Q\subset\mathbb{R}^n$ is the unitary cube, the $n$-th dimensional volume of the | ||
+ | parallelepiped $\mathcal{A}(Q)\subset\mathbb{R}^m$ is given by $\sqrt{\det(A^T\,A)}$ | ||
+ | due to [[Polar decomposition|polar decomposition]] of $A$, recall that $n\leq m$. | ||
− | + | Formula (1) above then expresses the square of the $n$-th dimensional volume of | |
− | + | $\mathcal{A}(Q)$ as the sum of the squares of the volumes of the projections on | |
+ | all coordinates $n$ planes (cp. with [[Area formula|Area formula]]). | ||
− | |||
− | + | ===References=== | |
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|EG}}|| L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. {{MR|1158660}} {{ZBL|0804.2800}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Fe}}|| | ||
+ | F.R. Gantmacher, "The theory of matrices. Vol. 1", AMS Chelsea Publishing, Providence, RI, (1998). | ||
+ | {{MR|1657129}} | ||
+ | |- | ||
+ | |} |
Latest revision as of 16:10, 23 November 2012
2020 Mathematics Subject Classification: Primary: 15Axx [MSN][ZBL]
A formula aimed at expressing the determinant of the product of two matrices $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order minors of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$ denotes any multi-index $(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$ of length $m$, then \[ \det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha}, \] where $A_{\alpha\,\beta}=(a_{\alpha_i\beta_j})$ and $B_{\beta\,\alpha}=(a_{\beta_j\alpha_i})$. In case $m>n$, no such $\beta$ exists and the right-hand side above is set to be $0$ by definition.
Note that if $n=m$ the formula reduces to \[ \det (AB)=\det A\,\det B. \] More generally, if $A\in\mathrm{M}_{m,n}(\mathbb{R})$, $B\in\mathrm{M}_{n,q}(\mathbb{R})$ and $p\leq\min\{m,q\}$, then any minor of order $p$ of the product matrix $AB$ can be expressed as follows by Cauchy-Binet's formula \[ \det((AB)_{\alpha\,\gamma})=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\gamma}, \] where $\alpha=(\alpha_1\ldots,\alpha_p)$ with $1\leq\alpha_1<\ldots<\alpha_p\leq m$, $\gamma=(\gamma_1,\ldots,\gamma_p)$ with $1\leq\gamma_1<\ldots<\gamma_p\leq q$, and $\beta=(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$.
A number of interesting consequence of Cauchy-Binet's formula is listed below. First of all, an inequality for the rank of the product matrix follows straightforwardly, i.e., \[ \mathrm{rank}(AB)\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}. \] Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors, by taking $$A=\begin{pmatrix} a_{1}&\dots&a_{n}\\ b_{1}&\dots&b_{n}\\ \end{pmatrix} \quad\text{and}\quad B=\begin{pmatrix} a_{1}&b_{1}\\ \dots&\dots\\ a_{n}&b_{n}\\ \end{pmatrix} $$ Cauchy-Binet's formula yields \[ \sum_{1\leq i<j\leq n}\begin{vmatrix} a_{i}&a_{j}\\ b_{i}&b_{j}\\ \end{vmatrix}^2= \begin{vmatrix} \|\mathbf{a}\|^2&\langle\mathbf{a},\mathbf{b}\rangle\\ \langle\mathbf{a}, \mathbf{b}\rangle&\|\mathbf{b}\|^2\\ \end{vmatrix}, \] in turn implying Cauchy-Schwartz's inequality. Here, $\|\cdot\|$ and $\langle\cdot,\cdot\rangle$ are the Euclidean norm and scalar product, respectively.
Let us finally interpret geometrically the result. Take $B=A^T$, then $\det(A_{\alpha\beta})=\det(A^T_{\beta,\alpha})$, so that by Cauchy-Binet's formula \[\label{p} \det(A^T\,A)=\sum_\beta(\det(A_{\alpha\beta}))^2. \] This is a generalization of the Pythagorean formula, corresponding to $m=1$. Indeed, if $\mathcal{B}:\mathbb{R}^n\to\mathbb{R}^m$ is the linear map associated to $A^T$, and $Q\subset\mathbb{R}^n$ is the unitary cube, the $n$-th dimensional volume of the parallelepiped $\mathcal{A}(Q)\subset\mathbb{R}^m$ is given by $\sqrt{\det(A^T\,A)}$ due to polar decomposition of $A$, recall that $n\leq m$.
Formula (1) above then expresses the square of the $n$-th dimensional volume of $\mathcal{A}(Q)$ as the sum of the squares of the volumes of the projections on all coordinates $n$ planes (cp. with Area formula).
References
[EG] | L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800 |
[Fe] |
F.R. Gantmacher, "The theory of matrices. Vol. 1", AMS Chelsea Publishing, Providence, RI, (1998). MR1657129 |
Matteo.focardi/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matteo.focardi/sandbox&oldid=28511