Namespaces
Variants
Actions

Difference between revisions of "Multinomial distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(refs format)
m (dead link removed)
Line 27: Line 27:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m06533039.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m06533039.png" /></td> </tr></table>
  
(which is used in mathematical statistics to construct the [["Chi-squared" distribution| "chi-squared" test]]) tends to the [[Chi-squared test| "chi-squared" distribution]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m06533040.png" /> degrees of freedom.
+
(which is used in mathematical statistics to construct the [[Chi-squared distribution| "chi-squared" test]]) tends to the [[Chi-squared test| "chi-squared" distribution]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m06533040.png" /> degrees of freedom.
  
 
====References====
 
====References====

Revision as of 11:46, 20 October 2012

polynomial distribution

2020 Mathematics Subject Classification: Primary: 60E99 [MSN][ZBL]

The joint distribution of random variables that is defined for any set of non-negative integers satisfying the condition , , , by the formula

(*)

where (, ) are the parameters of the distribution. A multinomial distribution is a multivariate discrete distribution, namely the distribution for the random vector with (this distribution is in essence -dimensional, since it is degenerate in the Euclidean space of dimensions). A multinomial distribution is a natural generalization of a binomial distribution and coincides with the latter for . The name of the distribution is given because the probability (*) is the general term in the expansion of the multinomial . The multinomial distribution appears in the following probability scheme. Each of the random variables is the number of occurrences of one of the mutually exclusive events , , in repeated independent trials. If in each trial the probability of event is , , then the probability (*) is equal to the probability that in trials the events will appear times, respectively. Each of the random variables has a binomial distribution with mathematical expectation and variance .

The random vector has mathematical expectation and covariance matrix , where

(the rank of the matrix is because ). The characteristic function of a multinomial distribution is

For , the distribution of the vector with normalized components

tends to a certain multivariate normal distribution, while the distribution of the sum

(which is used in mathematical statistics to construct the "chi-squared" test) tends to the "chi-squared" distribution with degrees of freedom.

References

[C] H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) MR0016588 Zbl 0063.01014

Comments

References

[JK] N.L. Johnson, S. Kotz, "Discrete distributions" , Wiley (1969) MR0268996 Zbl 0292.62009
How to Cite This Entry:
Multinomial distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multinomial_distribution&oldid=26633
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article