Namespaces
Variants
Actions

Difference between revisions of "Weak topology"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 2: Line 2:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.A. Lyusternik,  V.I. Sobolev,  "A short course of functional analysis" , Moscow  (1982)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H.H. Schaefer,  "Topological vector spaces" , Springer  (1971)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.A. Lyusternik,  V.I. Sobolev,  "A short course of functional analysis" , Moscow  (1982)  (In Russian) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H.H. Schaefer,  "Topological vector spaces" , Springer  (1971) {{MR|0342978}} {{MR|0276721}} {{ZBL|0217.16002}} {{ZBL|0212.14001}} </TD></TR></table>
  
  
Line 12: Line 12:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Jarchow,  "Locally convex spaces" , Teubner  (1981)  (Translated from German)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Jarchow,  "Locally convex spaces" , Teubner  (1981)  (Translated from German) {{MR|0632257}} {{ZBL|0466.46001}} </TD></TR></table>

Revision as of 12:13, 27 September 2012

The locally convex topology on a vector space generated by the family of semi-norms (cf. Semi-norm) , where ranges over some subset of the (algebraic) adjoint space .

References

[1] L.A. Lyusternik, V.I. Sobolev, "A short course of functional analysis" , Moscow (1982) (In Russian)
[2] H.H. Schaefer, "Topological vector spaces" , Springer (1971) MR0342978 MR0276721 Zbl 0217.16002 Zbl 0212.14001


Comments

The weak topology as introduced above is often denoted by . It is a Hausdorff topology if and only if separates the points of .

See also Strong topology.

References

[a1] H. Jarchow, "Locally convex spaces" , Teubner (1981) (Translated from German) MR0632257 Zbl 0466.46001
How to Cite This Entry:
Weak topology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weak_topology&oldid=17244
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article