Namespaces
Variants
Actions

Difference between pages "Brun theorem" and "Painlevé problem"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
(Importing text file)
 
 
Line 1: Line 1:
''on prime twins''
+
{{MSC|53A04|53A35}}
  
The series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017710/b0177101.png" /> is convergent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017710/b0177102.png" /> runs through all (the first members of all) prime [[Twins|twins]]. This means that even if the number of prime twins is infinitely large, they are still located in the natural sequence rather sparsely. This theorem was demonstrated by V. Brun [[#References|[1]]]. The convergence of a similar series for generalized twins was proved at a later date.
 
  
====References====
+
[[Category:Analysis]]
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V. Brun,  "La série <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017710/b0177103.png" /> ou les dénominateurs sont  "nombres premiers jumeaux"  et convergente ou finie"  ''Bull. Sci. Math. (2)'' , '''43'''  (1919)  pp. 100–104; 124–128</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Trost,  "Primzahlen" , Birkhäuser  (1953)</TD></TR></table>
 
  
  
 +
{{TEX|done}}
  
====Comments====
 
  
 +
===The problem and first results===
  
====References====
+
The Painlevé problem is to find a characterization in geometric terms for the removable singularities of bounded analytic functions, or equivalently, for the null-sets of the [[analytic capacity]]. P. Painlevé studied this problem already in 1888 and proved a sufficient condition:  if a compact plane set $K$ has length (that is, one-dimensional [[Hausdorff measure]]) zero, then it is removable for bounded analytic functions. The latter means that whenever $U$ is an open set in $\mathbb C$ containing $K$ and $f$ is bounded and analytic in $U\setminus K$, then $f$ has an analytic extension to $U$. In the other direction; if $K$ has [[Hausdorff dimension]] greater than 1 (in particular, if $K$ has interior points), then $K$ is not removable. A deep result due to A.P. Calder\'on from 1977 says that if $K$ is a subset of a [[rectifiable curve]], then $K$ is removable if and only if it has length zero.
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Halberstam,  H.-E. Richert,   "Sieve methods" , Acad. Press  (1974)</TD></TR></table>
+
 
 +
===Tolsa's solution===
 +
 
 +
 
 +
In {{Cite|T}} X. Tolsa solved  Painlevé's problem. The solution depends on the so-called Menger curvature $c(z_1,z_2,z_3)$ for triples of points in  $\mathbb C$ and a formula of M.S. Melnikov relating it to the Cauchy kernel $1/z$. By definition the Menger curvature is the reciprocal of the radius of the circle passing through the points $z_1,z_2,z_3$; it is equal to zero if and only if the three points lie on one line. Tolsa's solution is:
 +
 
 +
A compact set $K\subset \mathbb C$ is not removable for bounded analytic functions if and only there is a positive non-trivial Borel measure $\mu$ on $\mathbb C$ such that
 +
$\mu(D)\leq diam(D)$ for all discs $D$ in $\mathbb C$ and $\int\int\int c(z_1,z_2,z_3)^2d\mu z_1d\mu z_2d\mu z_3<\infty$.
 +
 
 +
 
 +
Good general reference is  {{Cite|P}}.
 +
 
 +
===References===
 +
 
 +
{|
 +
 
 +
|-
 +
 
 +
 
 +
|valign="top"|{{Ref|P}}|| H. Pajot, "Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral" , Spinger-Verlag Lecture Notes 1799, 2002. {{MR|}} {{ZBL|}}
 +
 
 +
|-
 +
 
 +
|valign="top"|{{Ref|T}}|| X. Tolsa, "Painlevè's problem and the semiadditivity of analytic capacity" , Acta Mathematica, 190 (2003), 105-149. {{MR|}} {{ZBL|}}

Latest revision as of 17:55, 24 September 2012

2020 Mathematics Subject Classification: Primary: 53A04 Secondary: 53A35 [MSN][ZBL]


The problem and first results

The Painlevé problem is to find a characterization in geometric terms for the removable singularities of bounded analytic functions, or equivalently, for the null-sets of the analytic capacity. P. Painlevé studied this problem already in 1888 and proved a sufficient condition: if a compact plane set $K$ has length (that is, one-dimensional Hausdorff measure) zero, then it is removable for bounded analytic functions. The latter means that whenever $U$ is an open set in $\mathbb C$ containing $K$ and $f$ is bounded and analytic in $U\setminus K$, then $f$ has an analytic extension to $U$. In the other direction; if $K$ has Hausdorff dimension greater than 1 (in particular, if $K$ has interior points), then $K$ is not removable. A deep result due to A.P. Calder\'on from 1977 says that if $K$ is a subset of a rectifiable curve, then $K$ is removable if and only if it has length zero.

Tolsa's solution

In [T] X. Tolsa solved Painlevé's problem. The solution depends on the so-called Menger curvature $c(z_1,z_2,z_3)$ for triples of points in $\mathbb C$ and a formula of M.S. Melnikov relating it to the Cauchy kernel $1/z$. By definition the Menger curvature is the reciprocal of the radius of the circle passing through the points $z_1,z_2,z_3$; it is equal to zero if and only if the three points lie on one line. Tolsa's solution is:

A compact set $K\subset \mathbb C$ is not removable for bounded analytic functions if and only there is a positive non-trivial Borel measure $\mu$ on $\mathbb C$ such that $\mu(D)\leq diam(D)$ for all discs $D$ in $\mathbb C$ and $\int\int\int c(z_1,z_2,z_3)^2d\mu z_1d\mu z_2d\mu z_3<\infty$.


Good general reference is [P].

References

[P] H. Pajot, "Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral" , Spinger-Verlag Lecture Notes 1799, 2002.
[T] X. Tolsa, "Painlevè's problem and the semiadditivity of analytic capacity" , Acta Mathematica, 190 (2003), 105-149.
How to Cite This Entry:
Brun theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brun_theorem&oldid=16073
This article was adapted from an original article by N.I. Klimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article