Namespaces
Variants
Actions

Difference between revisions of "User:Luca.Spolaor/sandbox"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 16: Line 16:
 
{|
 
{|
 
|-
 
|-
|valign="top"|{{Ref|Sim}}||    Leon Simon, "Lectures on Geometric Measure Theory". Proceedings of the centre for Mathematical Analysis. Australian National University ,Centre for Mathematical Analysis, Canberra, 1983.      {{MR|0756417}}{{ZBL|1074.49011}}  
+
|valign="top"|{{Ref|Sim}}||    Leon Simon, "Lectures on Geometric Measure Theory". Proceedings of the centre for Mathematical Analysis. Australian National University ,Centre for Mathematical Analysis, Canberra, 1983.      {{MR|0756417}}{{ZBL|0546.49019}}  
 
|-
 
|-
 
|valign="top"|{{Ref|FX}}||    Lin Fanghua, Yang Xiaoping, "Geometric Measure Theory-An Introduction". Advanced Mathematics Vol.1. International Press, Boston, 2002.      {{MR|2030862}}{{ZBL|1074.49011}}  
 
|valign="top"|{{Ref|FX}}||    Lin Fanghua, Yang Xiaoping, "Geometric Measure Theory-An Introduction". Advanced Mathematics Vol.1. International Press, Boston, 2002.      {{MR|2030862}}{{ZBL|1074.49011}}  
 
|}
 
|}

Revision as of 09:36, 11 September 2012

2020 Mathematics Subject Classification: Primary: 49Q15 [MSN][ZBL]


Rectifiable varifolds are a generalization of rectifiable sets in the sense that they allow for a density function to be defined on the set. They are also strictly connected to rectifiable currents, in fact to such a current one can always associate a varifold by putting aside the orientation.

Definitions

First Variation and Stationariety

Allard's Regularity Theorem

References

[Sim] Leon Simon, "Lectures on Geometric Measure Theory". Proceedings of the centre for Mathematical Analysis. Australian National University ,Centre for Mathematical Analysis, Canberra, 1983. MR0756417Zbl 0546.49019
[FX] Lin Fanghua, Yang Xiaoping, "Geometric Measure Theory-An Introduction". Advanced Mathematics Vol.1. International Press, Boston, 2002. MR2030862Zbl 1074.49011
How to Cite This Entry:
Luca.Spolaor/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Luca.Spolaor/sandbox&oldid=27886