Namespaces
Variants
Actions

Difference between pages "Boolean differential calculus" and "Upper and lower limits"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
(Importing text file)
 
(qqu)
 
Line 1: Line 1:
A branch of mathematics dealing with the concepts of differentials and derivatives of Boolean functions (cf. [[Boolean function|Boolean function]]) and the manner of using these in the study of such functions.
+
{{TEX|done}}
  
Boolean differential calculus originated from the treatment of electrical engineering problems in the areas of error-correcting codes (cf. [[Error-correcting code|Error-correcting code]]) and of design and testing of switching circuits; development into a self-contained mathematical theory was achieved in 1959 [[#References|[a1]]], [[#References|[a2]]], and continued in the time thereafter [[#References|[a3]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]]. Boolean differential calculus has also found other engineering applications: e.g., it can be used as a unifying framework for the modeling and investigation of finite automata (cf. [[Automaton, finite|Automaton, finite]]) and of discrete event dynamical systems [[#References|[a7]]] (cf. also [[Discrete event system|Discrete event system]]), i.e., dynamical systems with discrete states and changes of states called events; such systems arise e.g. in digital network communication protocols.
+
==Upper and lower limit of a real sequence==
 +
===Definition===
 +
The upper and lower limit of a sequence of real numbers $\{x_n\}$ (called also limes superior and limes inferior) can be defined in several ways and are denoted, respectively as
 +
\[
 +
\limsup_{n\to\infty}\, x_n\qquad \liminf_{n\to\infty}\,\, x_n
 +
\]
 +
(some authors use also the notation $\overline{\lim}$ and $\underline{\lim}$). One possible definition is the following
  
Many concepts in Boolean differential calculus are in analogy to those of classical [[Differential calculus|differential calculus]] for real-valued functions of one or more real variables; such are, e.g., the concept of a differential, describing the change of the value of a function and variables, and the concept of a derivative, describing how the value of a function depends on changes of its argument(s).
+
'''Definition 1'''
 +
\[
 +
\limsup_{n\to\infty} \, x_n = \inf_{n\in\mathbb N}\,\,  \sup_{k\geq n}\, x_k
 +
\]
 +
\[
 +
\liminf_{n\to\infty}\,<, x_n = \sup_{n\in\mathbb N}\,\, \inf_{k\geq n}\, x_k\, .
 +
\]
  
The simplest and (with regard to applications) most important case is based on the two-element Boolean algebra with carrier set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107601.png" />, on Boolean or binary variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107602.png" />, and on vectors of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107603.png" /> in a Boolean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107604.png" />. A Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107605.png" /> is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107606.png" />, and a set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107607.png" /> functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107608.png" /> can be represented as a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b1107609.png" />.
+
===Properties===
 +
It follows easily from the definition that
 +
\[
 +
\liminf_n\,\, x_n = -\limsup_n\, (-x_n)\, ,
 +
\]
 +
\[
 +
\liminf_n\,\, (\lambda x_n) = \lambda\, \liminf_n\,\, x_n\qquad \limsup_n\, (\lambda x_n) = \lambda\, \limsup_n\, x_n\qquad \mbox{when $\lambda > 0$}
 +
\]
 +
and that
 +
\[
 +
\liminf_n\,\, (x_n + y_n)\geq \liminf\, x_n + \liminf\,\, y_n \qquad \limsup_n\, (x_n + y_n)\leq \limsup\, x_n + \limsup\, y_n
 +
\]
 +
if the additions are not of the type $-\infty + \infty$.
  
A Boolean equation of the general form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076010.png" /> can always be written in homogeneous form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076011.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076012.png" />, and a set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076013.png" /> simultaneous equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076014.png" /> can always be combined into one single equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076015.png" />. Here and below, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076016.png" /> denotes addition modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076017.png" />, or the operation of exclusive or, and the symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076020.png" /> stand for disjunction, conjunction and negation, respectively.
+
Moreover, the limit of $\{x_n\}$ exists and it is a real number $L$ (respetively $\infty$, $-infty$) if and only if the upper and lower limit coincide
 +
and are a real number $L$ (resp. $\infty$, $-\infty$).
  
==Derivatives.==
+
The upper and lower limits of a sequence are both finite if and only if the sequence is bounded.
Suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076022.png" />. The (Boolean) derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076023.png" /> of a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076024.png" /> with respect to the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076025.png" /> is the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076026.png" /> given by
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076027.png" /></td> </tr></table>
+
===Characterizations===
 +
The upper and lower limits can also be defined in several alternative ways. In particular
  
or, equivalently,
+
'''Theorem 1'''
 +
Let $S:=\{a\in ]-\infty, \infty] : \{k: x_k >a\} \mbox{is finite}\}$ and $L:= \{a\in  [-\infty, \infty[ : \{k: x_k <a\} \mbox{is finite}\}$. Then
 +
$\limsup x_n$ is the minimum of $S$ and $\liminf x_n$ is the maximum of $L$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076028.png" /></td> </tr></table>
+
'''Theorem 2'''
 +
Consider the set $A$ of elements $\ell\in [-\infty, \infty]$ for which there is a subsequence of $\{y_n\}$ converging to $\ell$. Then
 +
$\limsup x_n$ is the maximum of $A$ and $\liminf x_n$ is the minimum of $A$.
  
It has the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076029.png" /> if and only if a change in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076030.png" /> changes the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076031.png" />.
+
'''Theorem 3'''
 +
$U:=\limsup x_n$ is characterized by the two properties:
 +
* if $U< \infty$ for all $u> U$ there is $N\in \mathbb N$ such that $x_n< u$ for all $n> N$;
 +
* if $U> -\infty$ for all $u< U$ and $N\in \mathbb N$ there is a $k>N$ with $x_k> u$.
 +
$L:=\liminf x_n$ is characterized by the two properties:
 +
* if $U> -\infty$ for all $u< U$ there is $N\in\mathbb N$ such that $x_n> u$ for all $n> N$;
 +
* if $U< \infty$ for all $u> U$ and $N\in\mathbb N$ there is a $k> N$ with $x_k< u$.
  
The maximum and the minimum of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076032.png" /> with respect to the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076033.png" /> is defined as:
+
===Examples===
 +
If $x_n = (-1)^n$ then
 +
\[
 +
\liminf\, x_n = -1 \qquad \mbox{and} \qquad \limsup_n\, x_n = 1\, .
 +
\]
 +
If $x_n = (-1)^n n$ then
 +
\[
 +
\liminf\, x_n = -\infty \qquad \mbox{and} \qquad \limsup_n\, x_n = \infty\, .
 +
\]
 +
If $x_n = n + (-1)^n$, then
 +
\[
 +
\liminf\, x_n = 0 \qquad \mbox{and} \qquad \limsup_n\, x_n = \infty\, .
 +
\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076034.png" /></td> </tr></table>
+
==Upper and lower limit of a real function==
 +
===Definition===
 +
If $f$ is a real-valued function defined on a set $E\subset \mathbb R$ (or $\subset \mathbb R^k$), the upper and lower limits of $f$ at $x_0$ are denoted by
 +
\[
 +
\limsup_{x\to x_0}\, f(x)\qquad \mbox{and}\qquad \liminf_{x\to x_0}\, f(x)\, .
 +
\]
 +
and, under the assumptions that $x_0$ is an [[Accumulation point|accumulation point]] for $E$ (i.e. there is a sequence $\{y_n\}\subset E\setminus x_0\}$ converging to $x_0$) can be defined as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076035.png" /></td> </tr></table>
+
'''Definition 4'''
 +
\[
 +
\limsup_{x\to x_0}\, f(x) = \inf_{r> 0} \,\sup\, \{f(x): |x-x_0|< r, x\in E \setminus \{x_0\}\}
 +
\]
 +
\[
 +
\liminf_{x\to x_0}\, f(x) = \sup_{r> 0} \,\inf\, \{f(x): |x-x_0|< r, x\in E \setminus \{x_0\}\}
 +
\]
  
Suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076037.png" />. The derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076038.png" /> of a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076039.png" /> with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076040.png" /> variables in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076041.png" /> is the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076042.png" />,
+
(Some authors include also the point $x_0$ in the definitions above, however this choice is less common).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076043.png" /></td> </tr></table>
+
The definition above can be easilily extended to functions defined on an arbitrary [[Metric space|metric space]] $(X, d)$: it suffices to replace
 +
$|x-x_0|< r$ with $d (x, x_0)< r$, namely
  
Maxima and minima of a function with respect to more than one of its variables are defined accordingly.
+
'''Definition 5'''
 +
\[
 +
\limsup_{x\to x_0}\, f(x) = \inf_{r> 0} \,\sup\, \{f(x): d(x,x_0)< r, x\in E \setminus \{x_0\}\}
 +
\]
 +
\[
 +
\liminf_{x\to x_0}\, f(x) = \sup_{r> 0} \,\inf\, \{f(x): d(x,x_0)< r, x\in E \setminus \{x_0\}\}
 +
\]
  
==Differentials.==
+
As in the case of sequences, some authors use the notation $\overline{\lim}$ and $\underline{\lim}$.
The variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076044.png" /> defined by
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076045.png" /></td> </tr></table>
+
===Characterizations===
 +
The upper and lower limits
 +
\[
 +
U =\limsup_{x\to x_0}\, f(x)
 +
\]
 +
\[
 +
L :=\liminf_{x\to x_0}\, f(x)
 +
\]
 +
can also be defined in several alternative ways. A useful one, which reduces to sequences, is the following:
  
is called the differential of the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076046.png" />, and describes changes in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076047.png" />. Likewise, the vector
+
'''Theorem 6'''
 +
$U$ is characterized by the properties:
 +
* There is a sequence $\{y_k\}\subset E\setminus \{x_0\}$ such that $\lim y_k = x_0$ and $\lim f(y_k) = U$;
 +
* For any sequence $\{y_k\}\subset E\setminus \{x_0\}$ converging to $x_0$ we have $\limsup\, f (y_k)\leq U$.
 +
$L$ is characterized by the properties:
 +
* There is a sequence $\{y_k\}\subset E\setminus \{x_0\}$ such that $\lim y_k = x_0$ and $\lim f(y_k) = L$;
 +
* For any sequence $\{y_k\}\subset E\setminus \{x_0\}$ converging to $x_0$ we have $\liminf\, f (y_k)\geq L$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076048.png" /></td> </tr></table>
+
This theorem is valid in an arbitrary metric space.
  
is called the differential of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076049.png" />, and describes the changes that occur in the components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076050.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076051.png" /> changes to some other value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076052.png" />; here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076053.png" /> denotes component-wise exclusive-or. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076055.png" /> is a point, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076056.png" /> is the direction from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076057.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076058.png" />. The (total) differential of a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076059.png" /> is given by
+
===Properties===
 +
From Theorem 6 it can be easily concluded that
 +
\[
 +
\liminf_{x\to x_0}\,\, f(x) = - \limsup_{x\to x_0}\, (- f(x))
 +
\]
 +
\[
 +
\liminf_{x\to x_0}\,\, (\lambda f (x)) = \lambda\,  \liminf_{x\to x_0}\,\, f(x) \qquad \limsup_{x\to x_0}\, (\lambda f(x)) = \lambda\, \limsup_{x\to x_0}\, f(x)\qquad \mbox{when $\lambda > 0$}
 +
\]
 +
and that
 +
\[
 +
\liminf_{x\to x_0}\,\, (f(x) + g(x))\geq \liminf_{x\to x_0}\,\, f(x) + \liminf_{x\to x_0}\,\, g(x) \qquad \limsup_{x\to x_0}\, (f(x) + g(x))\leq \limsup_{x\to x_0}\, f(x) + \limsup_{x\to x_0}\, g(x)  
 +
\]
 +
if the additions are not of the type $-\infty + \infty$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076060.png" /></td> </tr></table>
+
The function $f$ has a finite limit $L$ (resp. has limit $\infty$, $-\infty$) if the lower and upper limits coincide and are equal to $L$ (resp. $\infty$, $-\infty$).
  
the partial differential of a Boolean function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076061.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076062.png" /> is given by
+
Moreover, we have the following
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076063.png" /></td> </tr></table>
+
'''Proposition'''
 +
Consider the closed set $E'$ of accumulation points of $E$ and define
 +
\[
 +
\underline{f} (x) := \liminf_{y\to x}\,\, f(y)\,
 +
\]
 +
\[
 +
\overline{f} (x) := \limsup_{y\to x}\, f(y)\, .
 +
\]
 +
$\underline{f}$ is lower [[Semi-continuous function|semicontinuous]] and $\overline{f}$ is upper semicontinuous.
  
and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076065.png" />th partial differential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076066.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076067.png" /> is given by
+
===From metric spaces to sequences===
 +
Consider the space $X=\mathbb N\cup\{\infty\}$ with the metric:  
 +
\[
 +
d (n,m) = \left|\frac{1}{m+1} - \frac{1}{n+1}\right|,\qquad d(n,\infty) = \frac{1}{n+1}\, .
 +
\]
 +
Given a sequence of real numbers $\{x_n\}$ consider the function $f:\mathbb N\to \mathbb R$ given by $f(n) = x_n$ as a function defined on a subset of $X$. Then $\limsup_n\, x_n$ and $\liminf_n\,\, x_n$ in the sense of Definition 1 coincide with
 +
\[
 +
\limsup_{n\to\infty}\, f(n)\qquad \liminf_{n\to\infty}\,\, f (n)
 +
\]
 +
in the metric-space sense of Definition 6.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076068.png" /></td> </tr></table>
+
==Upper and lower limit of sets==
 +
If $\{A_k\}$ is a sequence of subsets of $X$, the upper and lower limit of the sequence $\{A_k\}$ is defined as
 +
\[
 +
\limsup_{k\to\infty}\, A_k = \bigcap_{n\in\mathbb N}\, \bigcup_{k\geq n} A_k\,
 +
\]
 +
\[
 +
\liminf_{k\to\infty}\, A_k = \bigcup_{n\in\mathbb N}\, \bigcap_{k\geq n} A_k\,.
 +
\]
  
Other useful operators include the various differential minima and maxima that can be derived from the various differentials of functions by replacing  ""  with  ""  or  "+" .
+
==References==
 
+
{|
Boolean differential equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076069.png" />, as well as Boolean equations, can be solved and investigated with the aid of differential operators. Numerical tools may operate on the solution sets of equations rather than on the equations themselves. A compact representation of solution sets uses <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076070.png" />-, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110760/b11076071.png" />-, and  "do-not-care" -elements in ternary-valued tables.
+
|-
 
+
|valign="top"|{{Ref|Ap}}||valign="top"| T.M. Apostol,  "Mathematical analysis". Second edition. Addison-Wesley  (1974) {{MR|0344384}} {{ZBL|0309.2600}}
====References====
+
|-
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.B. Akers,  "On a theory of Boolean functions" ''SIAM J.'' , '''7'''  (1959) pp. 487–498</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.D. Talantsev,  "On the analysis and synthesis of certain electrical circuits by means of special logical operators"  ''Avtomat. i Telemeh.'' , '''20'''  (1959) pp. 898–907 (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Thayse,  "Boolean differential calculus" ''Philips Res. Rep.'' , '''26'''  (1971) pp. 229–246</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D. Bochmann,   "Boolean differential calculus (a survey)"  ''Engin. Cybernet.'' , '''15''' :  5  (1977) pp. 67–75</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> D. Bochmann,  C. Posthoff,  "Binäre dynamische Systeme" , R. Oldenbourg  (1981)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Thayse,  "Boolean calculus of differences" , ''Lecture Notes in Computer Science'' , '''101''' , Springer (1981)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> R. Scheuring,  H. Wehlan,   "On the design of discrete event dynamic systems by means of the Boolean differential calculus" D. Franke (ed.)  F. Kraus (ed.) , ''Design Methods of Control Systems'' , '''2''' , Pergamon (1991pp. 723–728</TD></TR></table>
+
|valign="top"|{{Ref|IlPo}}||valign="top"| V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR (1982)  (Translated from Russian) {{MR|0687827}}  {{ZBL|0138.2730}}
 +
|-
 +
|valign="top"|{{Ref|Ku}}||valign="top"| L.D. Kudryavtsev,  "Mathematical analysis" , '''1''' , Moscow (1973)  (In Russian) {{MR|0619214}} {{ZBL|0703.26001}}
 +
|-
 +
|valign="top"|{{Ref|Ni}}||valign="top"| S.M. Nikol'skii,  "A course of mathematical analysis" , '''1''' , MIR  (1977) (Translated from Russian) {{MR|0466435}} {{ZBL|0384.00004}}
 +
|-
 +
|valign="top"|{{Ref|Ru}}||valign="top"| W. Rudin, "Principles of mathematical analysis", Third editionMcGraw-Hill (1976) {{MR|038502}} {{ZBL|0346.2600}}  
 +
|-
 +
|}

Revision as of 15:58, 12 August 2012


Upper and lower limit of a real sequence

Definition

The upper and lower limit of a sequence of real numbers $\{x_n\}$ (called also limes superior and limes inferior) can be defined in several ways and are denoted, respectively as \[ \limsup_{n\to\infty}\, x_n\qquad \liminf_{n\to\infty}\,\, x_n \] (some authors use also the notation $\overline{\lim}$ and $\underline{\lim}$). One possible definition is the following

Definition 1 \[ \limsup_{n\to\infty} \, x_n = \inf_{n\in\mathbb N}\,\, \sup_{k\geq n}\, x_k \] \[ \liminf_{n\to\infty}\,<, x_n = \sup_{n\in\mathbb N}\,\, \inf_{k\geq n}\, x_k\, . \]

Properties

It follows easily from the definition that \[ \liminf_n\,\, x_n = -\limsup_n\, (-x_n)\, , \] \[ \liminf_n\,\, (\lambda x_n) = \lambda\, \liminf_n\,\, x_n\qquad \limsup_n\, (\lambda x_n) = \lambda\, \limsup_n\, x_n\qquad \mbox{when '"`UNIQ-MathJax4-QINU`"'} \] and that \[ \liminf_n\,\, (x_n + y_n)\geq \liminf\, x_n + \liminf\,\, y_n \qquad \limsup_n\, (x_n + y_n)\leq \limsup\, x_n + \limsup\, y_n \] if the additions are not of the type $-\infty + \infty$.

Moreover, the limit of $\{x_n\}$ exists and it is a real number $L$ (respetively $\infty$, $-infty$) if and only if the upper and lower limit coincide and are a real number $L$ (resp. $\infty$, $-\infty$).

The upper and lower limits of a sequence are both finite if and only if the sequence is bounded.

Characterizations

The upper and lower limits can also be defined in several alternative ways. In particular

Theorem 1 Let $S:=\{a\in ]-\infty, \infty] : \{k: x_k >a\} \mbox{is finite}\}$ and $L:= \{a\in [-\infty, \infty[ : \{k: x_k <a\} \mbox{is finite}\}$. Then $\limsup x_n$ is the minimum of $S$ and $\liminf x_n$ is the maximum of $L$.

Theorem 2 Consider the set $A$ of elements $\ell\in [-\infty, \infty]$ for which there is a subsequence of $\{y_n\}$ converging to $\ell$. Then $\limsup x_n$ is the maximum of $A$ and $\liminf x_n$ is the minimum of $A$.

Theorem 3 $U:=\limsup x_n$ is characterized by the two properties:

  • if $U< \infty$ for all $u> U$ there is $N\in \mathbb N$ such that $x_n< u$ for all $n> N$;
  • if $U> -\infty$ for all $u< U$ and $N\in \mathbb N$ there is a $k>N$ with $x_k> u$.

$L:=\liminf x_n$ is characterized by the two properties:

  • if $U> -\infty$ for all $u< U$ there is $N\in\mathbb N$ such that $x_n> u$ for all $n> N$;
  • if $U< \infty$ for all $u> U$ and $N\in\mathbb N$ there is a $k> N$ with $x_k< u$.

Examples

If $x_n = (-1)^n$ then \[ \liminf\, x_n = -1 \qquad \mbox{and} \qquad \limsup_n\, x_n = 1\, . \] If $x_n = (-1)^n n$ then \[ \liminf\, x_n = -\infty \qquad \mbox{and} \qquad \limsup_n\, x_n = \infty\, . \] If $x_n = n + (-1)^n$, then \[ \liminf\, x_n = 0 \qquad \mbox{and} \qquad \limsup_n\, x_n = \infty\, . \]

Upper and lower limit of a real function

Definition

If $f$ is a real-valued function defined on a set $E\subset \mathbb R$ (or $\subset \mathbb R^k$), the upper and lower limits of $f$ at $x_0$ are denoted by \[ \limsup_{x\to x_0}\, f(x)\qquad \mbox{and}\qquad \liminf_{x\to x_0}\, f(x)\, . \] and, under the assumptions that $x_0$ is an accumulation point for $E$ (i.e. there is a sequence $\{y_n\}\subset E\setminus x_0\}$ converging to $x_0$) can be defined as

Definition 4 \[ \limsup_{x\to x_0}\, f(x) = \inf_{r> 0} \,\sup\, \{f(x): |x-x_0|< r, x\in E \setminus \{x_0\}\} \] \[ \liminf_{x\to x_0}\, f(x) = \sup_{r> 0} \,\inf\, \{f(x): |x-x_0|< r, x\in E \setminus \{x_0\}\} \]

(Some authors include also the point $x_0$ in the definitions above, however this choice is less common).

The definition above can be easilily extended to functions defined on an arbitrary metric space $(X, d)$: it suffices to replace $|x-x_0|< r$ with $d (x, x_0)< r$, namely

Definition 5 \[ \limsup_{x\to x_0}\, f(x) = \inf_{r> 0} \,\sup\, \{f(x): d(x,x_0)< r, x\in E \setminus \{x_0\}\} \] \[ \liminf_{x\to x_0}\, f(x) = \sup_{r> 0} \,\inf\, \{f(x): d(x,x_0)< r, x\in E \setminus \{x_0\}\} \]

As in the case of sequences, some authors use the notation $\overline{\lim}$ and $\underline{\lim}$.

Characterizations

The upper and lower limits \[ U =\limsup_{x\to x_0}\, f(x) \] \[ L :=\liminf_{x\to x_0}\, f(x) \] can also be defined in several alternative ways. A useful one, which reduces to sequences, is the following:

Theorem 6 $U$ is characterized by the properties:

  • There is a sequence $\{y_k\}\subset E\setminus \{x_0\}$ such that $\lim y_k = x_0$ and $\lim f(y_k) = U$;
  • For any sequence $\{y_k\}\subset E\setminus \{x_0\}$ converging to $x_0$ we have $\limsup\, f (y_k)\leq U$.

$L$ is characterized by the properties:

  • There is a sequence $\{y_k\}\subset E\setminus \{x_0\}$ such that $\lim y_k = x_0$ and $\lim f(y_k) = L$;
  • For any sequence $\{y_k\}\subset E\setminus \{x_0\}$ converging to $x_0$ we have $\liminf\, f (y_k)\geq L$.

This theorem is valid in an arbitrary metric space.

Properties

From Theorem 6 it can be easily concluded that \[ \liminf_{x\to x_0}\,\, f(x) = - \limsup_{x\to x_0}\, (- f(x)) \] \[ \liminf_{x\to x_0}\,\, (\lambda f (x)) = \lambda\, \liminf_{x\to x_0}\,\, f(x) \qquad \limsup_{x\to x_0}\, (\lambda f(x)) = \lambda\, \limsup_{x\to x_0}\, f(x)\qquad \mbox{when '"`UNIQ-MathJax81-QINU`"'} \] and that \[ \liminf_{x\to x_0}\,\, (f(x) + g(x))\geq \liminf_{x\to x_0}\,\, f(x) + \liminf_{x\to x_0}\,\, g(x) \qquad \limsup_{x\to x_0}\, (f(x) + g(x))\leq \limsup_{x\to x_0}\, f(x) + \limsup_{x\to x_0}\, g(x) \] if the additions are not of the type $-\infty + \infty$.

The function $f$ has a finite limit $L$ (resp. has limit $\infty$, $-\infty$) if the lower and upper limits coincide and are equal to $L$ (resp. $\infty$, $-\infty$).

Moreover, we have the following

Proposition Consider the closed set $E'$ of accumulation points of $E$ and define \[ \underline{f} (x) := \liminf_{y\to x}\,\, f(y)\, \] \[ \overline{f} (x) := \limsup_{y\to x}\, f(y)\, . \] $\underline{f}$ is lower semicontinuous and $\overline{f}$ is upper semicontinuous.

From metric spaces to sequences

Consider the space $X=\mathbb N\cup\{\infty\}$ with the metric: \[ d (n,m) = \left|\frac{1}{m+1} - \frac{1}{n+1}\right|,\qquad d(n,\infty) = \frac{1}{n+1}\, . \] Given a sequence of real numbers $\{x_n\}$ consider the function $f:\mathbb N\to \mathbb R$ given by $f(n) = x_n$ as a function defined on a subset of $X$. Then $\limsup_n\, x_n$ and $\liminf_n\,\, x_n$ in the sense of Definition 1 coincide with \[ \limsup_{n\to\infty}\, f(n)\qquad \liminf_{n\to\infty}\,\, f (n) \] in the metric-space sense of Definition 6.

Upper and lower limit of sets

If $\{A_k\}$ is a sequence of subsets of $X$, the upper and lower limit of the sequence $\{A_k\}$ is defined as \[ \limsup_{k\to\infty}\, A_k = \bigcap_{n\in\mathbb N}\, \bigcup_{k\geq n} A_k\, \] \[ \liminf_{k\to\infty}\, A_k = \bigcup_{n\in\mathbb N}\, \bigcap_{k\geq n} A_k\,. \]

References

[Ap] T.M. Apostol, "Mathematical analysis". Second edition. Addison-Wesley (1974) MR0344384 Zbl 0309.2600
[IlPo] V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 1–2 , MIR (1982) (Translated from Russian) MR0687827 Zbl 0138.2730
[Ku] L.D. Kudryavtsev, "Mathematical analysis" , 1 , Moscow (1973) (In Russian) MR0619214 Zbl 0703.26001
[Ni] S.M. Nikol'skii, "A course of mathematical analysis" , 1 , MIR (1977) (Translated from Russian) MR0466435 Zbl 0384.00004
[Ru] W. Rudin, "Principles of mathematical analysis", Third edition, McGraw-Hill (1976) MR038502 Zbl 0346.2600
How to Cite This Entry:
Boolean differential calculus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boolean_differential_calculus&oldid=12153
This article was adapted from an original article by H. Wehlan (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article