Difference between revisions of "Lebesgue point"
(circular link removed) |
|||
Line 17: | Line 17: | ||
Let $f$ be as above. Then $\lambda$-a.e. $x$ is a Lebesgue point for $f$. | Let $f$ be as above. Then $\lambda$-a.e. $x$ is a Lebesgue point for $f$. | ||
− | The set of Lebesgue points of $f$ is called | + | The set of Lebesgue points of $f$ is called ''Lebesgue set''. |
====Comments==== | ====Comments==== |
Revision as of 19:10, 7 August 2012
2020 Mathematics Subject Classification: Primary: 49Q15 [MSN][ZBL]
Let $f: \mathbb R^n \to \mathbb R^k$ be an absolutely locally integrable function (with respect to the Lebesgue measure $\lambda$). A Lebesgue point $x$ for $f$ is a point where \[ \lim_{r\downarrow 0} \frac{1}{\lambda (B_r (x))} \int_{B_r (x)} |f(y)-f(x)|\, dy = 0 \] Note that a Lebesgue point is, therefore, a point where $f$ is approximately continuous. Viceversa, if $f$ is essentially bounded, then any point of approximate continuity is a Lebesgue point.
The following theorem of Lebesgue holds.
Theorem 1 Let $f$ be as above. Then $\lambda$-a.e. $x$ is a Lebesgue point for $f$.
The set of Lebesgue points of $f$ is called Lebesgue set.
Comments
This concept and assertions of the type of the Lebesgue theorem lie at the foundation of various investigations of problems on convergence almost-everywhere and, in particular, of the investigations concerning singular integrals. A generalizazion is possible for Radon measures in the Euclidean space (see Differentiation of measures).
References
[KF] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) |
[St] | E.M. Stein, "Singular integrals and differentiability properties of functions" , Princeton Univ. Press (1970) |
Lebesgue point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_point&oldid=27419