|
|
Line 30: |
Line 30: |
| \] | | \] |
| A corollary of the Radon-Nikodym, the Hahn decomposition theorem, characterize signed measures | | A corollary of the Radon-Nikodym, the Hahn decomposition theorem, characterize signed measures |
− | as differences of nonnegative measures. We refer to [[Radon-Nikodym]] for more on this topic. | + | as differences of nonnegative measures. We refer to [[Signed measure]] for more on this topic. |
| | | |
| + | ====Absolute continuity of a function==== |
| + | A function $f:I\to \mathbb R$, where $I$ is an interval of the real line, |
| + | is said absolutely continuous if for every $\varepsilon> 0$ |
| + | there is $\delta> 0$ such that, for any $a_1<b_1<a_2<b_2<\ldots < a_n<b_n \in I$ with |
| + | $\sum_i |a_i -b_i| <\delta$, we have |
| + | \[ |
| + | \sum_i |f(a_i)-f (b_i)| <\varepsilon\, . |
| + | \] |
| + | This notion can be easily generalized when the target of the function is a metric space. |
| | | |
| + | An absolutely continuous function is always continuous. Indeed, if the interval of definition is open, |
| + | then the absolutely continuous function has a continuous extension to its closure, which is itself |
| + | absolutely continuous. |
| + | A continuous function might not be absolutely continuous, even if the interval $I$ is compact. |
| + | Take for instance the function $f:[0,1]\to \mathbb R$ such that $f(0)=0$ and $f(x) = x \sin x^{-1}$ for |
| + | $x>0$. The space of absolutely continuous (real-valued) functions is a vector space. |
| + | A characterization of absolutely continuous functions on an interval might be |
| + | given in terms of Sobolev spaces: a continuous function $f:I\to \mathbb R$ is absolutely continuous |
| + | if and only its [[Generalized derivative|distributional derivative]] is an $L^1$ function (if $I$ is |
| + | bounded, this is equivalent to require $f\in W^{1,1} (I)$). Viceversa, |
| + | for any function with $L^1$ distributional derivatie there is an absolutely continuous representative, i.e. |
| + | an absolutely continuous $\tilde{f}$ such that $\tilde{f} = f$ a.e.. The latter statement |
| + | can be proved using the absolute continuity of the Lebesgue integral. |
| | | |
| + | An absolute continuous function is differentiable almost everywhere and its pointwise derivative |
| + | coincides with the generalized one. The fundamental theorem of calculus holds for absolutely continuous |
| + | functions, i.e. if we denote it by $f'$ its pointwise derivative, we then have |
| + | \begin{equation}\label{e:fundamental} |
| + | f (b)-f(a) = \int_a^n f' (x)\, dx \qquad \forall a<b\in I\, . |
| + | \end{equation} |
| + | In fact this is yet another characterization of absolutely continuous functions. |
| | | |
− | Absolute continuity of a function is a stronger notion than continuity. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030034.png" /> defined on a segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030035.png" /> is said to be absolutely continuous if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030036.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030037.png" /> such that for any finite system of pairwise non-intersecting intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030039.png" />, for which
| + | The differentiability almost everywhere does not imply the absolute continuity: a notable |
− | | + | example is the Cantor ternary function or devil staircase. Though such function is differentiable |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030040.png" /></td> </tr></table>
| + | almost everywhere, it fails to satisfy \ref{e:fundamental} (indeed the generalized derivative |
− | | + | of the Cantor ternary function is a measure which is not absolutely continuous with respect to |
− | the inequality | + | the Lebesgue measure). |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030041.png" /></td> </tr></table>
| |
− | | |
− | holds. Any absolutely continuous function on a segment is continuous on this segment. The opposite implication is not true: e.g. the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030042.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030044.png" /> is continuous on the segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030045.png" />, but is not absolutely continuous on it. If, in the definition of an absolutely continuous function, the requirement that the pairwise intersections of intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030046.png" /> are empty be discarded, then the function will satisfy an even stronger condition: A [[Lipschitz condition|Lipschitz condition]] with some constant.
| |
− | | |
− | If two functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030048.png" /> are absolutely continuous, then their sum, difference and product are also absolutely continuous and, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030049.png" /> does not vanish, so is their quotient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030050.png" />. The superposition of two absolutely continuous functions need not be absolutely continuous. However, if the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030051.png" /> is absolutely continuous on a segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030052.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030054.png" />, while the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030055.png" /> satisfies a Lipschitz condition on the segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030056.png" />, then the composite function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030057.png" /> is absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030058.png" />. If a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030059.png" />, which is absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030060.png" />, is monotone increasing, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030061.png" /> is absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030062.png" />, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030063.png" /> is also absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030064.png" />.
| |
| | | |
| An absolutely continuous function maps a set of measure zero into a set of measure zero, and a measurable set into a measurable set. Any continuous function of finite variation which maps each set of measure zero into a set of measure zero is absolutely continuous. Any absolutely continuous function can be represented as the difference of two absolutely continuous non-decreasing functions. | | An absolutely continuous function maps a set of measure zero into a set of measure zero, and a measurable set into a measurable set. Any continuous function of finite variation which maps each set of measure zero into a set of measure zero is absolutely continuous. Any absolutely continuous function can be represented as the difference of two absolutely continuous non-decreasing functions. |
− |
| |
− | A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030065.png" /> that is absolutely continuous on the segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030066.png" /> has a finite variation on this segment and has a finite derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030067.png" /> at almost every point. The derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030068.png" /> is summable over this segment, and
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030069.png" /></td> </tr></table>
| |
− |
| |
− | If the derivative of an absolutely continuous function is almost everywhere equal to zero, then the function itself is constant. On the other hand, for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030070.png" /> that is summable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030071.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030072.png" /> is absolutely continuous on this segment. Accordingly, the class of functions that are absolutely continuous on a given segment coincides with the class of functions that can be represented as an indefinite Lebesgue integral, i.e. as a Lebesgue integral with a variable upper limit of a certain summable function plus a constant.
| |
− |
| |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030073.png" /> is absolutely continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030074.png" />, then its total variation is
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030075.png" /></td> </tr></table>
| |
− |
| |
− | The concept of absolute continuity can be generalized to include both functions of several variables and set functions (see Subsection 4 below).
| |
− |
| |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''5''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR></table>
| |
− |
| |
− | ''L.D. Kudryavtsev''
| |
− |
| |
− | Absolute continuity of a set function is a concept usually applied to countably-additive functions defined on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030076.png" />-ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030077.png" /> of subsets of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030078.png" />. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030079.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030080.png" /> are two countably-additive functions defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030081.png" /> having values in the extended real number line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030082.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030083.png" /> is absolutely continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030084.png" /> (in symbols this is written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030085.png" />) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030086.png" /> entails <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030087.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030088.png" /> is the total variation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030089.png" />:
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030090.png" /></td> </tr></table>
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030091.png" /></td> </tr></table>
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030092.png" /></td> </tr></table>
| |
− |
| |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030094.png" /> are measures, known as the positive and negative variations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030095.png" />; according to the Jordan–Hahn theorem, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030096.png" />. It turns out that the relations 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030097.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030098.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a01030099.png" />; 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300100.png" /> are equivalent. If the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300101.png" /> is finite, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300102.png" /> if and only if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300103.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300104.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300105.png" /> entails <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300106.png" />. According to the [[Radon–Nikodým theorem|Radon–Nikodým theorem]], if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300107.png" /> are (completely) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300108.png" />-finite, (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300109.png" /> and there exists a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300110.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300111.png" /> such that
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300112.png" /></td> </tr></table>
| |
− |
| |
− | and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300113.png" />, then there exists on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300114.png" /> a finite measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300115.png" /> such that
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300116.png" /></td> </tr></table>
| |
− |
| |
− | Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300117.png" /> is (completely) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300118.png" />-finite and the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300119.png" /> makes sense, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300120.png" /> as a function of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300121.png" /> is absolutely continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300122.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300123.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300124.png" /> are (completely) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300125.png" />-finite measures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300126.png" />, there exist uniquely defined (completely) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300127.png" />-finite measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300128.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300129.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300130.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300131.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300132.png" /> is singular with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300133.png" /> (i.e. there exists a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300134.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300135.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300136.png" />) (Lebesgue's theorem). A measure, defined on the Borel sets of a finite-dimensional Euclidean space (or, more generally, of a locally compact group), is called absolutely continuous if it is absolutely continuous with respect to the Lebesgue (Haar) measure. A non-negative measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300137.png" /> on the Borel sets of the real line is absolutely continuous if and only if the corresponding distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010300/a010300138.png" /> is absolutely continuous (as a function of a real variable). The concept of absolute continuity of a set function can also be defined for finitely-additive functions and for functions with vector values.
| |
− |
| |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Neveu, "Bases mathématiques du calcul des probabilités" , Masson (1970)</TD></TR></table>
| |
− |
| |
− | ''V.V. Sazonov''
| |
− |
| |
− | ====Comments====
| |
− |
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.L. Royden, "Real analysis" , Macmillan (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.C. Zaanen, "Integration" , North-Holland (1967)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 98</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.E. Taylor, "General theory of functions and integration" , Blaisdell (1965)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> C.D. Aliprantz, O. Burleinshaw, "Principles of real analysis" , North-Holland (1981)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|AmFuPa}}|| L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. {{MR|1857292}}{{ZBL|0957.49001}} |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}|| N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) {{MR|0583191}} {{ZBL|1116.28002}} {{ZBL|1106.46005}} {{ZBL|1106.46006}} {{ZBL|1182.28002}} {{ZBL|1182.28001}} {{ZBL|1095.28002}} {{ZBL|1095.28001}} {{ZBL|0156.06001}} |
| + | |- |
| + | |valign="top"|{{Ref|DS}}|| N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958) {{MR|0117523}} |
| + | |- |
| + | |valign="top"|{{Ref|Bi}}|| P. Billingsley, "Convergence of probability measures" , Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}} |
| + | |- |
| + | |valign="top"|{{Ref|Ha}}|| P.R. Halmos, "Measure theory" , v. Nostrand (1950) |
| + | |- |
| + | |valign="top"|{{Ref|He}}|| E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) |
| + | |- |
| + | |valign="top"|{{Ref|KF}}|| A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961). |
| + | |- |
| + | |valign="top"|{{Ref|Ma}}|| P. Mattila, "Geometry of sets and measures in euclidean spaces". Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. {{MR|1333890}} {{ZBL|0911.28005}} |
| + | |- |
| + | |valign="top"|{{Ref|Ro}}|| H.L. Royden, "Real analysis" , Macmillan (1968) |
| + | |- |
| + | |valign="top"|{{Ref|Ru}}|| W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953) |
| + | |- |
| + | |valign="top"|{{Ref|Ta}}|| A.E. Taylor, "General theory of functions and integration" , Blaisdell (1965) |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 28A33 [MSN][ZBL]
Absolute continuity of the Lebesgue integral
Describes a property of absolutely Lebesgue integrable functions. Consider the Lebesgue measure $\mathcal{L}$ on the $n$-dimensional
euclidean space and let $f\in L^1 (\mathbb R^n, \mathcal{L})$. Then for every $\varepsilon>0$ there is a $\delta>0$ such that
\[
\left|\int_E f (x) d\mathcal{L} (x)\right| < \varepsilon \qquad \mbox{for every measurable set '"`UNIQ-MathJax6-QINU`"' with '"`UNIQ-MathJax7-QINU`"'}.
\]
This property can be generalized to measures $\mu$ on a $\sigma$-algebra $\mathcal{B}$ of subsets of a space $X$ and
to functions $f\in L^1 (X, \mu)$.
Absolute continuity of measures
A concept in measure theory. If $\mu$ and $\nu$ are two measures on a $\sigma$-algebra $\mathcal{B}$ of
subsets of $X$, we say that $\nu$ is absolutely continuous with respect to $\mu$ if $\nu (A) =0$ for
any $A\in\mathcal{B}$ such that $\mu (A) =0$. This definition can be generalized to signed measures $\nu$
and even to vector-valued measure $\nu$. Some authors generalize it further to vector-valued $\mu$'s: in
that case the absolute continuity of $\nu$ with respect to $\mu$ amounts to the requirement that
$\nu (A) = 0$ for any $A\in\mathcal{B}$ such that $|\mu| (A)=0$, where $|\mu|$ is the total variation of $\mu$
(see Signed measure for the relevant definition).
The Radon-Nikodym theorem characterizes the absolute continuity of $\nu$ with respect to $\mu$ with
the existence of a function $f\in L^1 (\mu)$ such that $\nu = f \mu$, i.e. such that
\[
\nu (A) = \int_A f\, d\mu \qquad \mbox{for every '"`UNIQ-MathJax37-QINU`"'.}
\]
A corollary of the Radon-Nikodym, the Hahn decomposition theorem, characterize signed measures
as differences of nonnegative measures. We refer to Signed measure for more on this topic.
Absolute continuity of a function
A function $f:I\to \mathbb R$, where $I$ is an interval of the real line,
is said absolutely continuous if for every $\varepsilon> 0$
there is $\delta> 0$ such that, for any $a_1<b_1<a_2<b_2<\ldots < a_n<b_n \in I$ with
$\sum_i |a_i -b_i| <\delta$, we have
\[
\sum_i |f(a_i)-f (b_i)| <\varepsilon\, .
\]
This notion can be easily generalized when the target of the function is a metric space.
An absolutely continuous function is always continuous. Indeed, if the interval of definition is open,
then the absolutely continuous function has a continuous extension to its closure, which is itself
absolutely continuous.
A continuous function might not be absolutely continuous, even if the interval $I$ is compact.
Take for instance the function $f:[0,1]\to \mathbb R$ such that $f(0)=0$ and $f(x) = x \sin x^{-1}$ for
$x>0$. The space of absolutely continuous (real-valued) functions is a vector space.
A characterization of absolutely continuous functions on an interval might be
given in terms of Sobolev spaces: a continuous function $f:I\to \mathbb R$ is absolutely continuous
if and only its distributional derivative is an $L^1$ function (if $I$ is
bounded, this is equivalent to require $f\in W^{1,1} (I)$). Viceversa,
for any function with $L^1$ distributional derivatie there is an absolutely continuous representative, i.e.
an absolutely continuous $\tilde{f}$ such that $\tilde{f} = f$ a.e.. The latter statement
can be proved using the absolute continuity of the Lebesgue integral.
An absolute continuous function is differentiable almost everywhere and its pointwise derivative
coincides with the generalized one. The fundamental theorem of calculus holds for absolutely continuous
functions, i.e. if we denote it by $f'$ its pointwise derivative, we then have
\begin{equation}\label{e:fundamental}
f (b)-f(a) = \int_a^n f' (x)\, dx \qquad \forall a<b\in I\, .
\end{equation}
In fact this is yet another characterization of absolutely continuous functions.
The differentiability almost everywhere does not imply the absolute continuity: a notable
example is the Cantor ternary function or devil staircase. Though such function is differentiable
almost everywhere, it fails to satisfy \ref{e:fundamental} (indeed the generalized derivative
of the Cantor ternary function is a measure which is not absolutely continuous with respect to
the Lebesgue measure).
An absolutely continuous function maps a set of measure zero into a set of measure zero, and a measurable set into a measurable set. Any continuous function of finite variation which maps each set of measure zero into a set of measure zero is absolutely continuous. Any absolutely continuous function can be represented as the difference of two absolutely continuous non-decreasing functions.
References
[AmFuPa] |
L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations and free discontinuity problems". Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. MR1857292Zbl 0957.49001
|
[Bo] |
N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001
|
[DS] |
N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) MR0117523
|
[Bi] |
P. Billingsley, "Convergence of probability measures" , Wiley (1968) MR0233396 Zbl 0172.21201
|
[Ha] |
P.R. Halmos, "Measure theory" , v. Nostrand (1950)
|
[He] |
E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965)
|
[KF] |
A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961).
|
[Ma] |
P. Mattila, "Geometry of sets and measures in euclidean spaces". Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. MR1333890 Zbl 0911.28005
|
[Ro] |
H.L. Royden, "Real analysis" , Macmillan (1968)
|
[Ru] |
W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953)
|
[Ta] |
A.E. Taylor, "General theory of functions and integration" , Blaisdell (1965)
|