|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ''of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768801.png" /> by a normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768802.png" />''
| + | {{MSC|20}} |
| + | {{TEX|done}} |
| | | |
− | The group formed by the cosets (cf. [[Coset in a group|Coset in a group]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768803.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768804.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768805.png" />; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768806.png" /> (cf. [[Normal subgroup|Normal subgroup]]). Multiplication of cosets is performed according to the formula | + | The ''quotient group'' of a group $G$ by a normal subgroup $N$ is |
| + | the group formed by the cosets (cf. [[Coset in a group|Coset in a group]]) $Ng$, $g\in G$, of $G$; it is denoted by $G/N$ (cf. [[Normal subgroup|Normal subgroup]]). Multiplication of cosets is performed according to the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768807.png" /></td> </tr></table>
| + | $$Ng_1\; Ng_2 = Ng_1g_2.$$ |
| | | |
− | The unit of the quotient group is the coset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768808.png" />, and the inverse of the coset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q0768809.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688010.png" />. | + | The unit of the quotient group is the coset $N = N\;e$, and the inverse of the coset $Ng$ is $Ng^{-1}$. |
| | | |
− | The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688011.png" /> is a group epimorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688012.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688013.png" />, called the canonical epimorphism or natural epimorphism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688014.png" /> is an arbitrary epimorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688015.png" /> onto a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688016.png" />, then the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688018.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688019.png" />, and the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688020.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688021.png" />; more precisely, there is an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688023.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688024.png" /> such that the diagram | + | The mapping $\def\k{\kappa}\k : g\mapsto Ng$ is a group epimorphism of $G$ onto $G/N$, called the canonical epimorphism or natural epimorphism. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688025.png" /></td> </tr></table>
| + | If $\def\phi{\varphi}\phi:G\to G'$ is an arbitrary epimorphism of $G$ onto a group $G'$, then the kernel $K$ of $\phi$ is a normal subgroup of $G$, and the quotient group $G/K$ is isomorphic to $G'$; more precisely, there is an isomorphism $\psi$ of $G/K$ onto $G'$ such that the diagram |
| | | |
− | is commutative, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688026.png" /> is the natural epimorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688027.png" />. | + | $$\begin{matrix} G & \stackrel{\phi}\rightarrow & G'\\ & \kern-3pt\llap{\scriptstyle\kappa}\searrow & \uparrow\rlap{\scriptstyle\psi} \\ && G/K\end{matrix}$$ |
| + | is commutative, where $\k$ is the natural epimorphism $G\to G/K$. |
| | | |
− | A quotient group of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688028.png" /> can be defined, starting from some congruence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076880/q07688029.png" /> (cf. [[Congruence (in algebra)|Congruence (in algebra)]]), as the set of classes of congruent elements relative to multiplication of classes. All possible congruences on a group are in one-to-one correspondence with its normal subgroups, and the quotient groups by the congruences are the same as those by the normal subgroups. A quotient group is a normal quotient object in the category of groups. | + | A quotient group of a group $G$ can be defined, starting from some congruence on $G$ (cf. [[Congruence (in algebra)|Congruence (in algebra)]]), as the set of classes of congruent elements relative to multiplication of classes. All possible congruences on a group are in one-to-one correspondence with its normal subgroups, and the quotient groups by the congruences are the same as those by the normal subgroups. A quotient group is a normal quotient object in the category of groups. |
| | | |
| | | |
| | | |
− | ====Comments==== | + | ====References==== |
− | | + | {| |
− | | + | |- |
− | ====References====
| + | |valign="top"|{{Ref|Co}}||valign="top"| P.M. Cohn, "Algebra", '''I''', Wiley (1982) pp. Sect. 9.1 {{MR|0663370}} {{ZBL|0481.00001}} |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn, "Algebra" , '''I''' , Wiley (1982) pp. Sect. 9.1</TD></TR></table>
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 20-XX [MSN][ZBL]
The quotient group of a group $G$ by a normal subgroup $N$ is
the group formed by the cosets (cf. Coset in a group) $Ng$, $g\in G$, of $G$; it is denoted by $G/N$ (cf. Normal subgroup). Multiplication of cosets is performed according to the formula
$$Ng_1\; Ng_2 = Ng_1g_2.$$
The unit of the quotient group is the coset $N = N\;e$, and the inverse of the coset $Ng$ is $Ng^{-1}$.
The mapping $\def\k{\kappa}\k : g\mapsto Ng$ is a group epimorphism of $G$ onto $G/N$, called the canonical epimorphism or natural epimorphism.
If $\def\phi{\varphi}\phi:G\to G'$ is an arbitrary epimorphism of $G$ onto a group $G'$, then the kernel $K$ of $\phi$ is a normal subgroup of $G$, and the quotient group $G/K$ is isomorphic to $G'$; more precisely, there is an isomorphism $\psi$ of $G/K$ onto $G'$ such that the diagram
$$\begin{matrix} G & \stackrel{\phi}\rightarrow & G'\\ & \kern-3pt\llap{\scriptstyle\kappa}\searrow & \uparrow\rlap{\scriptstyle\psi} \\ && G/K\end{matrix}$$
is commutative, where $\k$ is the natural epimorphism $G\to G/K$.
A quotient group of a group $G$ can be defined, starting from some congruence on $G$ (cf. Congruence (in algebra)), as the set of classes of congruent elements relative to multiplication of classes. All possible congruences on a group are in one-to-one correspondence with its normal subgroups, and the quotient groups by the congruences are the same as those by the normal subgroups. A quotient group is a normal quotient object in the category of groups.
References