Namespaces
Variants
Actions

Difference between revisions of "Branching process with immigration"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: Seneta: right MR)
(refs format)
Line 33: Line 33:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758024.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758024.png" /></td> </tr></table>
  
it is necessary and sufficient [[#References|[3]]] that
+
it is necessary and sufficient {{Cite|FW}} that
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758025.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758025.png" /></td> </tr></table>
  
This condition is met, in particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758027.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758030.png" />, then [[#References|[4]]]
+
This condition is met, in particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758027.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758030.png" />, then {{Cite|S}}
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758031.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758031.png" /></td> </tr></table>
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758033.png" />, then there exists [[#References|[5]]] a sequence of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758035.png" />, such that
+
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758033.png" />, then there exists {{Cite|S2}} a sequence of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758035.png" />, such that
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758036.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017580/b01758036.png" /></td> </tr></table>
Line 54: Line 54:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Zubkov, "Life-like periods of a branching process with immigration" ''Theory Probab. Appl.'' , '''17''' : 1 (1972) pp. 174–183 ''Teor. Veroyatnost. i Primenen.'' , '''17''' : 1 (1972) pp. 179–188 {{MR|0300351}} {{ZBL|0267.60084}}</TD></TR>
+
{|
<TR><TD valign="top">[2]</TD> <TD valign="top"> A.G. Pakes, "Further results on the critical Galton–Watson process with immigration" ''J. Austral. Math. Soc.'' , '''13''' : 3 (1972) pp. 277–290 {{MR|0312585}} {{ZBL|0235.60078}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.H. Foster, J.A. Williamson, "Limit theorems for the Galton–Watson process with time-dependent immigration" ''Z. Wahrsch. Verw. Geb.'' , '''20''' (1971) pp. 227–235 {{MR|0305494}} {{ZBL|0219.60069}} {{ZBL|0212.19702}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Seneta, "An explicit limit theorem for the critical Galton–Watson process with immigration" ''J. Roy. Statist. Soc. Ser. B'' , '''32''' : 1 (1970) pp. 149–152 {{MR|0266320}} {{ZBL|0198.52002}} </TD></TR>
+
|valign="top"|{{Ref|Z}}|| A.M. Zubkov, "Life-like periods of a branching process with immigration" ''Theory Probab. Appl.'' , '''17''' : 1 (1972) pp. 174–183 ''Teor. Veroyatnost. i Primenen.'' , '''17''' : 1 (1972) pp. 179–188 {{MR|0300351}} {{ZBL|0267.60084}}
<TR><TD valign="top">[5]</TD> <TD valign="top"> E. Seneta, "On the supercritical Galton–Watson process with immigration" ''Math. Biosci.'' , '''7''' (1970) pp. 9–14 {{MR|0270460}} {{ZBL|0209.48804}} </TD></TR>
+
|-
<TR><TD valign="top">[6]</TD> <TD valign="top"> J.H. Foster, "A limit theorem for a branching process with state-dependent immigration" ''Ann. of Math. Statist.'' , '''42''' : 5 (1971) pp. 1773–1776 {{MR|0348854}} {{ZBL|0245.60063}} </TD></TR></table>
+
|valign="top"|{{Ref|P}}|| A.G. Pakes, "Further results on the critical Galton–Watson process with immigration" ''J. Austral. Math. Soc.'' , '''13''' : 3 (1972) pp. 277–290 {{MR|0312585}} {{ZBL|0235.60078}}
 +
|-
 +
|valign="top"|{{Ref|FW}}|| J.H. Foster, J.A. Williamson, "Limit theorems for the Galton–Watson process with time-dependent immigration" ''Z. Wahrsch. Verw. Geb.'' , '''20''' (1971) pp. 227–235 {{MR|0305494}} {{ZBL|0219.60069}} {{ZBL|0212.19702}}
 +
|-
 +
|valign="top"|{{Ref|S}}|| E. Seneta, "An explicit limit theorem for the critical Galton–Watson process with immigration" ''J. Roy. Statist. Soc. Ser. B'' , '''32''' : 1 (1970) pp. 149–152 {{MR|0266320}} {{ZBL|0198.52002}}
 +
|-
 +
|valign="top"|{{Ref|S2}}|| E. Seneta, "On the supercritical Galton–Watson process with immigration" ''Math. Biosci.'' , '''7''' (1970) pp. 9–14 {{MR|0270460}} {{ZBL|0209.48804}}
 +
|-
 +
|valign="top"|{{Ref|F}}|| J.H. Foster, "A limit theorem for a branching process with state-dependent immigration" ''Ann. of Math. Statist.'' , '''42''' : 5 (1971) pp. 1773–1776 {{MR|0348854}} {{ZBL|0245.60063}}
 +
|}
  
 
====Comments====
 
====Comments====
 
Additional references may be found in the article [[Branching process|Branching process]].
 
Additional references may be found in the article [[Branching process|Branching process]].

Revision as of 06:19, 11 May 2012

2020 Mathematics Subject Classification: Primary: 60J80 [MSN][ZBL]

A model of a branching process (discrete-time or continuous-time, with one or several types of particles, etc.) in which new particles may appear not only as the products of division of the original particles, but also as a result of immigration from some "external source" . For instance, let

be independent random variables with generating functions

respectively; the branching Galton–Watson process with immigration may be defined by the relations , where is the number of particles and

Here, the variable is interpreted as the number of daughter particles of the -th particle of the -th generation, while the variable is interpreted as the number of the particles which have immigrated into the -th generation. The generating functions

are given by the recurrence relations

The Markov chain corresponding to the Galton–Watson branching process with immigration is recurrent if and or and , and is transient if and or . For the Markov chain to be ergodic, i.e. for the limits

to exist and to satisfy

it is necessary and sufficient [FW] that

This condition is met, in particular, if and . If , , , then [S]

If and , then there exists [S2] a sequence of numbers , , such that

In branching processes with immigration in which the immigration takes place at only, i.e.

where is the Kronecker symbol, the following relation is valid if , and :

References

[Z] A.M. Zubkov, "Life-like periods of a branching process with immigration" Theory Probab. Appl. , 17 : 1 (1972) pp. 174–183 Teor. Veroyatnost. i Primenen. , 17 : 1 (1972) pp. 179–188 MR0300351 Zbl 0267.60084
[P] A.G. Pakes, "Further results on the critical Galton–Watson process with immigration" J. Austral. Math. Soc. , 13 : 3 (1972) pp. 277–290 MR0312585 Zbl 0235.60078
[FW] J.H. Foster, J.A. Williamson, "Limit theorems for the Galton–Watson process with time-dependent immigration" Z. Wahrsch. Verw. Geb. , 20 (1971) pp. 227–235 MR0305494 Zbl 0219.60069 Zbl 0212.19702
[S] E. Seneta, "An explicit limit theorem for the critical Galton–Watson process with immigration" J. Roy. Statist. Soc. Ser. B , 32 : 1 (1970) pp. 149–152 MR0266320 Zbl 0198.52002
[S2] E. Seneta, "On the supercritical Galton–Watson process with immigration" Math. Biosci. , 7 (1970) pp. 9–14 MR0270460 Zbl 0209.48804
[F] J.H. Foster, "A limit theorem for a branching process with state-dependent immigration" Ann. of Math. Statist. , 42 : 5 (1971) pp. 1773–1776 MR0348854 Zbl 0245.60063

Comments

Additional references may be found in the article Branching process.

How to Cite This Entry:
Branching process with immigration. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branching_process_with_immigration&oldid=25691
This article was adapted from an original article by A.M. Zubkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article