Difference between revisions of "Parallel transport"
Line 16: | Line 16: | ||
==Parallel transport in bundles: informal definition== | ==Parallel transport in bundles: informal definition== | ||
− | Let $\pi:E\to B$ be a [[ | + | Let $\pi:E\to B$ be a topological [[bundle]] with a generic fiber $F$, with all three topological spaces eventually having some additional structures defined on them. Usually we will assume that $E,B,F$ are smooth (finite-dimensional) manifolds with $\pi$ a differentiable map of full rank. |
− | A ''connection'' in the topological bundle is a correspondence which allows to associate with any simple path $\gamma:[0,1]\to B$ in the base a family of homeomorphisms $\ | + | A ''connection'' in the topological bundle is a correspondence which allows to associate with any simple path $\gamma:[0,1]\to B$ in the base a family of homeomorphisms $\tau_t^s:\pi^{-1}(\gamma(t))\to\pi^{-1}(\gamma(s))$ between the respective fibers $F_t=\pi^{-1}(\gamma(t))$ and $F_s=\pi^{-1}(\gamma(s))$ such that: |
− | * $\ | + | * $\Big\tau_t^s\circ \tau_r^t=\tau_{r}^s$ for all values $r,t,s\in[0,1]$, |
− | * the homeomorphisms $\ | + | * the homeomorphisms $\tau_{t}^s$ continuously depend on $t,s\in[0,1]$, |
− | * the homemorphisms $\ | + | * the homemorphisms $\tau_t^s$ preserve the additional structure<ref>E.g., if all fibers are linear or Euclidean spaces, then $\tau_t^s$ must be linear, resp., linear orthogonal operators.</ref> on the fibers, if any. |
+ | |||
+ | <small> | ||
+ | ---- | ||
+ | <references/> | ||
+ | <small> |
Revision as of 07:52, 10 May 2012
A topological or differential geometric construction generalizing the idea of parallel translation in affine spaces to general bundles. In contrast with the affine case, the result of parallel transport along a closed path may in general be nontrivial, leading thus to the notion of curvature.
Parallel transport (translation) in affine spaces
If $A$ is an affine space associated with the vector space $V=\Bbbk^n$ (over the field $\Bbbk$, usually $\Bbbk=\R$), then $V$ acts on $A$ by parallel translations $\{t_w:w\in V\}$: $$ \forall x=(a_1,\dots,a_n)\in A^n,\ \forall w=(w_1,\dots,w_n)\in V\qquad t_w x=(a_1+w_1,\dots,a_n+ w_n). $$ This action induces the (almost trivial) action of parallel transport on tangent vectors. If $TA\simeq V\times A\simeq\Bbbk^{2n}=\{(v,a)\}$ is the tangent bundle, the collection of vectors $v$ attached to different points $a\in A$, then the parallel transport acts on $TA$ by its differential, $$ \forall v\in T_aA,\ \forall w\in V,\qquad \rd t_w(a)\cdot v=v\in T_{t_w(a)}=T_{a+w} A. $$ Consequently, if $w_1,\dots,w_k\in V$ are vectors such that $w=w_1+\cdots+w_k=0$, then the action $t_{w_k}\circ\cdots\circ t_{w_1}:T_a A\to T_a A$ is the identity for any point $a$.
These trivial observations indicate some of the properties that will fail for general parallel transport.
Parallel transport in bundles: informal definition
Let $\pi:E\to B$ be a topological bundle with a generic fiber $F$, with all three topological spaces eventually having some additional structures defined on them. Usually we will assume that $E,B,F$ are smooth (finite-dimensional) manifolds with $\pi$ a differentiable map of full rank.
A connection in the topological bundle is a correspondence which allows to associate with any simple path $\gamma:[0,1]\to B$ in the base a family of homeomorphisms $\tau_t^s:\pi^{-1}(\gamma(t))\to\pi^{-1}(\gamma(s))$ between the respective fibers $F_t=\pi^{-1}(\gamma(t))$ and $F_s=\pi^{-1}(\gamma(s))$ such that:
- $\Big\tau_t^s\circ \tau_r^t=\tau_{r}^s$ for all values $r,t,s\in[0,1]$,
- the homeomorphisms $\tau_{t}^s$ continuously depend on $t,s\in[0,1]$,
- the homemorphisms $\tau_t^s$ preserve the additional structure[1] on the fibers, if any.
- ↑ E.g., if all fibers are linear or Euclidean spaces, then $\tau_t^s$ must be linear, resp., linear orthogonal operators.
Parallel transport. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parallel_transport&oldid=26313