Difference between revisions of "Distribution of tangent subspaces"
m (→Comments) |
|||
Line 27: | Line 27: | ||
commutators belong to the span: | commutators belong to the span: | ||
$$ | $$ | ||
− | \forall i,j\ | + | \forall i,j=1,\dots,k\qquad [v_i,v_j]=\sum_{s=1}^k |
+ | \varphi_{ijs} v_s | ||
$$ | $$ | ||
− | with suitable functions $\varphi_{ijs}$. | + | with suitable smooth functions $\varphi_{ijs}$. |
A distribution spanned by a tuple of $1$-forms | A distribution spanned by a tuple of $1$-forms | ||
Line 40: | Line 41: | ||
====Comments==== | ====Comments==== | ||
* The conditions appearing in the Frobenius theorem, are often referred to as ''involutivity'' of the distribution. | * The conditions appearing in the Frobenius theorem, are often referred to as ''involutivity'' of the distribution. | ||
+ | * The involutivity is automatic for 1-dimensional distributions: this is reflected in absence of extra integrability conditions in the theorem of existence of solutions of ordinary differential equations. | ||
+ | * An involutive system of vector fields can always be locally generated by ''commuting'' vector fields $w_1,\dots,w_k$ with $[w_i,w_j]=0$ for all $i,j$. | ||
* Algebraically, a distribution cannot be seen as a finitely generated $C^\infty(M)$-submodule of sections of the tangent bundle $TM$ (generated by the fields $v_1,\dots,v_k$). The involutivity means that this submodule is closed by the commutator action. | * Algebraically, a distribution cannot be seen as a finitely generated $C^\infty(M)$-submodule of sections of the tangent bundle $TM$ (generated by the fields $v_1,\dots,v_k$). The involutivity means that this submodule is closed by the commutator action. | ||
* Algebraically, a distribution can be seen as an ideal (generated by the forms $\xi_1,\dots,\xi_k)$ in the graded [[exterior algebra]] $\Lambda^\bullet(M)=\Lambda^1(M)\oplus\cdots\oplus\Lambda^n(M)$. The involutivity means that this ideal is closed by the [[exterior differential]] $\rd:\Lambda^i(M)\to\Lambda^{i+1}(M)$. | * Algebraically, a distribution can be seen as an ideal (generated by the forms $\xi_1,\dots,\xi_k)$ in the graded [[exterior algebra]] $\Lambda^\bullet(M)=\Lambda^1(M)\oplus\cdots\oplus\Lambda^n(M)$. The involutivity means that this ideal is closed by the [[exterior differential]] $\rd:\Lambda^i(M)\to\Lambda^{i+1}(M)$. |
Revision as of 13:22, 3 May 2012
Distribution on a smooth manifold is a collection of subspaces $L_a\subseteq T_aM$ of the tangent spaces $T_a M$, which depends in a regular way (smooth, analytic etc.) on the base point $a\in M$. In particular, the dimension of all subspaces should be constant (the dimension, sometimes the rank of the distribution). If the regularity fails on a small subset $\varSigma\subset M$, one sometimes says about singular distribution with the singular locus $\varSigma$.
One-dimensional distributions with $\dim L_a=1$ are sometimes called the line fields.
Definitions
In formal terms, a distribution is a subset of the tangent bundle $TM$, which itself has the inherited structure of the vector bundle over $M$. Usually the cases of $0$-dimensional and $n$-dimensional subspaces are excluded from consideration.
If $v_1,\dots,v_k$ are vector fields on $M$, their span is a distribution provided that the rank of the tuple of fields is constant over all points of $m$. A single vector field $v$ defines a line field (distribution of rank 1) over the set of points $M\smallsetminus\varSigma$ of its nonzero values, where $\varSigma=\{a\in M:\ v(a)=0\}$.
If $\xi_1,\dots,\xi_l\in\Lambda^1(M)$ are differential 1-forms on $M$, then their common null spaces $\bigcap_i\operatorname{Ker}\xi_i$ is a distribution provided that the rank of the tuple of forms is constant over all points of $M$.
Integrability of distributions
A distribution $L=\{L_x\}$ of rank $k$, $0<k<n$, is called integrable in a domain $U\subseteq M$, if through each point $a\in M$ passes the germ of a $k$-dimensional submanifold $N_a=N$ which is tangent to the distribution: $\forall x\in N\ L_x=T_xN\subset T_xM$.
Example. Each vector field defines an integrable distribution outside of its zero locus: the 1-dimensional submanifold (curve) through a point $a$ is the integral curve of $v$ with the initial condition at this point.
Frobenius integrability theorem. A distribution spanned by a tuple of vector fields $v_1,\dots,v_k$ over the set where their rank is $k$, is integrable if and only if their commutators belong to the span: $$ \forall i,j=1,\dots,k\qquad [v_i,v_j]=\sum_{s=1}^k \varphi_{ijs} v_s $$ with suitable smooth functions $\varphi_{ijs}$.
A distribution spanned by a tuple of $1$-forms $\xi_1,\dots,\xi_k$ is integrable if and only if $$ \rd \xi_i=\sum_{s=1}^k\eta_{is}\land\xi_s $$ with suitable 1-forms $\eta_{is}$.
Comments
- The conditions appearing in the Frobenius theorem, are often referred to as involutivity of the distribution.
- The involutivity is automatic for 1-dimensional distributions: this is reflected in absence of extra integrability conditions in the theorem of existence of solutions of ordinary differential equations.
- An involutive system of vector fields can always be locally generated by commuting vector fields $w_1,\dots,w_k$ with $[w_i,w_j]=0$ for all $i,j$.
- Algebraically, a distribution cannot be seen as a finitely generated $C^\infty(M)$-submodule of sections of the tangent bundle $TM$ (generated by the fields $v_1,\dots,v_k$). The involutivity means that this submodule is closed by the commutator action.
- Algebraically, a distribution can be seen as an ideal (generated by the forms $\xi_1,\dots,\xi_k)$ in the graded exterior algebra $\Lambda^\bullet(M)=\Lambda^1(M)\oplus\cdots\oplus\Lambda^n(M)$. The involutivity means that this ideal is closed by the exterior differential $\rd:\Lambda^i(M)\to\Lambda^{i+1}(M)$.
Distribution of tangent subspaces. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Distribution_of_tangent_subspaces&oldid=25893