|
|
(4 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A [[Simple finite group|simple finite group]] that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table.''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1">notation</td> <td colname="2" style="background-color:white;" colspan="1">name</td> <td colname="3" style="background-color:white;" colspan="1">order</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868701.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868702.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868703.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868704.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868705.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Mathieu groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868706.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868707.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868708.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s0868709.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687010.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687011.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687012.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687014.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Hall–Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687015.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687017.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Higman–Janko–McKay group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687018.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687019.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Janko group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687020.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687022.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687023.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687025.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Conway groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687026.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687028.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687029.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687031.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687032.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687034.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Fischer groups</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687035.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687037.png" /></td> <td colname="2" style="background-color:white;" colspan="1"></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687038.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687039.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Higman–Sims group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687040.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687042.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Held–Higman–McKay group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687043.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687044.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Suzuki group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687045.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687046.png" /></td> <td colname="2" style="background-color:white;" colspan="1">McLaughlin group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687047.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687048.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Lyons group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687049.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687050.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Rudvalis group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687051.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687053.png" /></td> <td colname="2" style="background-color:white;" colspan="1">O'Nan–Sims group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687054.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687056.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Monster, Fischer–Griess group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687057.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687059.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Baby monster</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687060.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687063.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Thompson group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687064.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687066.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687067.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Harada–Norton group</td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687068.png" /></td> </tr> </tbody> </table>
| + | {{MSC|20D08}} |
| + | {{TEX|done}} |
| | | |
− | </td></tr> </table>
| + | A ''sporadic simple group'' is |
| + | a [[Simple finite group|simple finite group]] that does not belong to any of the known infinite series of simple finite groups. The twenty-six sporadic simple groups are listed in the following table. |
| | | |
− | ====References==== | + | $\def\d{\cdot}$ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.A. Syskin, "Abstract properties of the simple sporadic groups" ''Russian Math. Surveys'' , '''35''' : 5 (1980) pp. 209–246 ''Uspekhi Mat. Nauk'' , '''35''' : 5 (1980) pp. 181–212</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Aschbacher, "The finite simple groups and their classification" , Yale Univ. Press (1980)</TD></TR></table>
| + | {| class="wikitable" style="margin: 1em auto 1em auto;" |
| + | |+ The twenty-six sporadic simple groups |
| + | ! Notation |
| + | ! Name |
| + | ! Order |
| + | |- |
| + | | $M_{11}$ |
| + | | rowspan="5" | [[Mathieu group | Mathieu groups]] |
| + | | $2^4\d 3^2\d 5\d 11$ |
| + | |- |
| + | | $M_{12}$ |
| + | | $2^6\d 3^3\d 5\d 11$ |
| + | |- |
| + | | $M_{22}$ |
| + | | $2^7\d 3^2\d 5\d 7\d 11$ |
| + | |- |
| + | | $M_{23}$ |
| + | | $2^7\d 3^2\d 5\d 7\d 11\d 23$ |
| + | |- |
| + | | $M_{24}$ |
| + | | $2^{10}\d 3^3\d 5\d 7\d 11\d 23$ |
| + | |- |
| + | | $J_1$ |
| + | | Janko group |
| + | | $2^3\d 3\d 5\d 7\d 11\d 19$ |
| + | |- |
| + | | $J_2$, $HJ$ |
| + | | Hall–Janko group |
| + | | $2^7\d 3^3\d 5^2\d 7$ |
| + | |- |
| + | | $J_3$, $HJM$ |
| + | | Hall–Janko–McKay group |
| + | | $2^7\d 3^5\d 5\d 17\d 19$ |
| + | |- |
| + | | $J_4$ |
| + | | Janko group |
| + | | $2^{21}\d 3^3\d 5\d 7\d 11^3\d 23\d 29\d 31\d 37\d 43$ |
| + | |- |
| + | | $Co_1$ |
| + | | rowspan="3" | Conway groups |
| + | | $2^{21}\d 3^9\d 5^4\d 7^2\d 11\d 13\d 23$ |
| + | |- |
| + | | $Co_2$ |
| + | | $2^{18}\d 3^6\d 5^3\d 7\d 11\d 23$ |
| + | |- |
| + | | $Co_3$ |
| + | | $2^{10}\d 3^7\d 5^3\d 7\d 11\d 23$ |
| + | |- |
| + | | $F_{22}$, $M(22)$ |
| + | | rowspan="3" | Fischer groups |
| + | | $2^{17}\d 3^9\d 5^2\d 7\d 11\d 13$ |
| + | |- |
| + | | $F_{23}$, $M(23)$ |
| + | | $2^{18}\d 3^{13}\d 5^2\d 7\d 11\d 13\d 17\d 23$ |
| + | |- |
| + | | $F_{24}^\prime$, $M(24)^\prime$ |
| + | | $2^{21}\d 3^{16}\d 5^2\d 7^3\d 11\d 13\d 17\d 23\d 29$ |
| + | |- |
| + | | $HS$ |
| + | | Higman–Sims group |
| + | | $2^9\d 3^2\d 5^3\d 7\d 11$ |
| + | |- |
| + | | $He$, $HHM$ |
| + | | Held–Higman–McKay group |
| + | | $2^{10}\d 3^3\d 5^2\d 7^3\d 17$ |
| + | |- |
| + | | $Suz$ |
| + | | Suzuki group |
| + | | $2^{13}\d 3^7\d 5^2\d 7\d 11\d 13$ |
| + | |- |
| + | | $McL$ |
| + | | McLaughlin group |
| + | | $2^7\d 3^6\d 5^3\d 7\d 11$ |
| + | |- |
| + | | $Ly$ |
| + | | Lyons group |
| + | | $2^8\d 3^7\d 5^6\d 7\d 11\d 31\d 37\d 67$ |
| + | |- |
| + | | $Ru$ |
| + | | Rudvalis group |
| + | | $2^{14}\d 3^3\d 5^3\d 7\d 13\d 29$ |
| + | |- |
| + | | $O'N$, $O'NS$ |
| + | | O'Nan–Sims group |
| + | | $2^9\d 3^4\d 5\d 7^3\d 11\d 19\d 31$ |
| + | |- |
| + | | $F_1$, $M$ |
| + | | Monster, Fischer–Griess group |
| + | | $2^{46}\d 3^{20}\d 5^9\d 7^6\d 11^2\d 13^3\d 17\d 19\d 23\d 29\d 31\d 41\d 47\d 59\d 71$ |
| + | |- |
| + | | $F_2$, $B$ |
| + | | Baby monster |
| + | | $2^{41}\d 3^{13}\d 5^6\d 7^2\d 11\d 13\d 17\d 19\d 23\d 31\d 47$ |
| + | |- |
| + | | $F_3$, $E$, $Th$ |
| + | | Thompson group |
| + | | $2^{15}\d 3^{10}\d 5^3\d 7^2\d 13\d 19\d 31$ |
| + | |- |
| + | | $F_5$, $D$, $HN$ |
| + | | Harada–Norton group |
| + | | $2^{14}\d 3^6\d 5^6\d 7\d 11\d 19$ |
| + | |} |
| | | |
| | | |
| + | ====Comments==== |
| + | The classification of the finite simple groups (cf. {{Cite|As}}, {{Cite|Go}}) has led to the conclusion that |
| + | every non-Abelian finite simple group is isomorphic to: an [[Alternating group|alternating group]] on at least 5 letters, a group of (twisted or untwisted) Lie type, or one of the above 26 sporadic groups. |
| + | A discussion of the proof is given in {{Cite|Go}} up to the uniqueness |
| + | proof for the monster group $F_1$, which did appear in {{Cite|GrMeSe}}. |
| | | |
− | ====Comments====
| |
− | The recent classification of the finite simple groups (1981) has led to the conclusion that — up to a uniqueness proof for the Monster as the only simple group of its order with certain additional properties — every non-Abelian finite simple group is isomorphic to: an [[Alternating group|alternating group]] on at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687069.png" /> letters, a group of (twisted or untwisted) Lie type, or one of the above <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086870/s08687070.png" /> sporadic groups. See [[#References|[a2]]] for a discussion of the proof.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Gorenstein, "Finite simple groups. An introduction to their classification" , Plenum (1982)</TD></TR></table>
| + | {| |
| + | |- |
| + | | valign="top"|{{Ref|As}}||valign="top"| M. Aschbacher, "The finite simple groups and their classification", Yale Univ. Press (1980) {{MR|0555880}} {{ZBL|0435.20007}} |
| + | |- |
| + | | valign="top"|{{Ref|CoCuNoPaWi}}||valign="top"| J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups", Clarendon Press (1985) {{MR|0827219}} {{ZBL|0568.20001}} |
| + | |- |
| + | | valign="top"|{{Ref|Go}}||valign="top"| D. Gorenstein, "Finite simple groups. An introduction to their classification", University Series in Mathematics. Plenum Publishing Corp., New York (1982) {{MR|0698782}} {{ZBL|0483.20008}} |
| + | |- |
| + | | valign="top"|{{Ref|GrMeSe}}||valign="top"| R.L. Griess, U. Meierfrankenfeld, Y. Segev, "A uniqueness proof for the Monster". ''Ann. of Math.'' (2) '''130''' (1989), no. 3, 567–602. {{MR|1025167}} {{ZBL|0691.20014}} |
| + | |- |
| + | | valign="top"|{{Ref|Sy}}||valign="top"| S.A. Syskin, "Abstract properties of the simple sporadic groups" ''Russian Math. Surveys'', '''35''' : 5 (1980) pp. 209–246 ''Uspekhi Mat. Nauk'', '''35''' : 5 (1980) pp. 181–212 {{MR|0595144}} {{ZBL|0466.20006}} |
| + | |- |
| + | |} |