|
|
(3 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | A measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920501.png" /> on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920502.png" /> of adèles (cf. [[Adèle|Adèle]]) of a connected [[Linear algebraic group|linear algebraic group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920503.png" /> defined over a global field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920504.png" />. This measure is constructed as follows: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920505.png" /> be a non-zero differential form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920506.png" /> of maximum degree which is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920507.png" />. For a valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920508.png" /> in the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t0920509.png" /> of equivalence classes of valuations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205010.png" />, one denotes by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205011.png" /> the Haar measure on the locally compact group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205012.png" /> of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205013.png" /> over the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205014.png" />, obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205015.png" /> (see [[#References|[1]]] and [[#References|[2]]]). If the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205016.png" /> taken over all non-Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205018.png" /> is the group of integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205019.png" />-adic points, is absolutely convergent (which is always the case for semi-simple and unipotent groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205020.png" />), then one puts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205021.png" />. (Otherwise, to define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205022.png" /> in some non-canonical way, one introduces a system of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205023.png" />, called convergence factors, such that the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205024.png" /> is absolutely convergent; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205025.png" />, see [[#References|[1]]], [[#References|[3]]].) The measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205026.png" /> thus obtained does not depend on the initial choice of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205027.png" />, and is the canonical Haar measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205028.png" />. This allows one to speak about the volume of homogeneous spaces connected with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092050/t09205029.png" /> (see [[Tamagawa number|Tamagawa number]]).
| + | {{MSC|20G30|12A85,20G35}} |
− | | + | {{TEX|done}} |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Weil, "Sur certaines groupes d'opérateurs unitaires" ''Acta Math.'' , '''111''' (1964) pp. 143–211</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> T. Ono, "On the Tamagawa number of algebraic tori" ''Ann. of Math.'' , '''78''' : 1 (1963) pp. 47–73</TD></TR></table>
| |
− | | |
− | | |
− | | |
− | ====Comments====
| |
| | | |
| + | The ''Tamagawa measure'' is |
| + | a measure $\tau$ on the group $G_A$ of adèles (cf. [[Adele group]]) |
| + | of a connected [[Linear algebraic group|linear algebraic group]] $G$ |
| + | defined over a global field $K$. This measure is constructed as |
| + | follows: Let $\omega$ be a non-zero differential form on $G$ of maximum |
| + | degree which is defined over $K$. For a valuation $\nu$ in the set $V$ |
| + | of equivalence classes of valuations of $K$, one denotes by $\omega_\nu$ the |
| + | Haar measure on the locally compact group $G_{K_v}$ of points of $G$ over |
| + | the completion $K_\nu$, obtained from $\omega$ (see {{Cite|We}} and |
| + | {{Cite|CaFr}}). If the product $\prod\omega_\nu(G_{O_\nu})$ taken over all |
| + | non-Archimedean $\nu$, where $G_{O_\nu}$ is the group of integral $\nu$-adic |
| + | points, is absolutely convergent (which is always the case for |
| + | semi-simple and unipotent groups $G$), then one puts $\tau=\prod_{\nu\in V} \omega_\nu$. (Otherwise, |
| + | to define $\tau$ in some non-canonical way, one introduces a system of |
| + | numbers $(\lambda_\nu)_{\nu\in V}$, called convergence factors, such that the product $\prod_{\nu\in V} \lambda_\nu \omega_\nu (G_{O_\nu})$ is |
| + | absolutely convergent; then $\tau = \prod_{\nu\in V} \lambda_\nu \omega_\nu$, see {{Cite|We}}, |
| + | {{Cite|On}}.) The measure $\tau$ thus obtained does not depend on |
| + | the initial choice of the form $\omega$, and is the canonical Haar measure |
| + | on $G_A$. This allows one to speak about the volume of homogeneous |
| + | spaces connected with $G_A$ (see [[Tamagawa number|Tamagawa number]]). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Weil, "Adèles and algebraic groups" , Birkhäuser (1982)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|CaFr}}||valign="top"| J.W.S. Cassels (ed.) A. Fröhlich (ed.), ''Algebraic number theory'', Acad. Press (1965) {{MR|0215665}} {{ZBL|0153.07403}} |
| + | |- |
| + | |valign="top"|{{Ref|On}}||valign="top"| T. Ono, "On the Tamagawa number of algebraic tori" ''Ann. of Math.'', '''78''' : 1 (1963) pp. 47–73 {{MR|0156851}} {{ZBL|0122.39101}} |
| + | |- |
| + | |valign="top"|{{Ref|We}}||valign="top"| A. Weil, "Sur certains groupes d'opérateurs unitaires" ''Acta Math.'', '''111''' (1964) pp. 143–211 {{MR|0165033}} {{ZBL|0203.03305}} |
| + | |- |
| + | |valign="top"|{{Ref|We2}}||valign="top"| A. Weil, "Adèles and algebraic groups", Birkhäuser (1982) {{MR|0670072}} {{ZBL|0493.14028}} |
| + | |- |
| + | |} |
Latest revision as of 12:25, 29 April 2012
2020 Mathematics Subject Classification: Primary: 20G30 Secondary: 12A8520G35 [MSN][ZBL]
The Tamagawa measure is
a measure $\tau$ on the group $G_A$ of adèles (cf. Adele group)
of a connected linear algebraic group $G$
defined over a global field $K$. This measure is constructed as
follows: Let $\omega$ be a non-zero differential form on $G$ of maximum
degree which is defined over $K$. For a valuation $\nu$ in the set $V$
of equivalence classes of valuations of $K$, one denotes by $\omega_\nu$ the
Haar measure on the locally compact group $G_{K_v}$ of points of $G$ over
the completion $K_\nu$, obtained from $\omega$ (see [We] and
[CaFr]). If the product $\prod\omega_\nu(G_{O_\nu})$ taken over all
non-Archimedean $\nu$, where $G_{O_\nu}$ is the group of integral $\nu$-adic
points, is absolutely convergent (which is always the case for
semi-simple and unipotent groups $G$), then one puts $\tau=\prod_{\nu\in V} \omega_\nu$. (Otherwise,
to define $\tau$ in some non-canonical way, one introduces a system of
numbers $(\lambda_\nu)_{\nu\in V}$, called convergence factors, such that the product $\prod_{\nu\in V} \lambda_\nu \omega_\nu (G_{O_\nu})$ is
absolutely convergent; then $\tau = \prod_{\nu\in V} \lambda_\nu \omega_\nu$, see [We],
[On].) The measure $\tau$ thus obtained does not depend on
the initial choice of the form $\omega$, and is the canonical Haar measure
on $G_A$. This allows one to speak about the volume of homogeneous
spaces connected with $G_A$ (see Tamagawa number).
References
How to Cite This Entry:
Tamagawa measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tamagawa_measure&oldid=14742
This article was adapted from an original article by A.S. Rapinchuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article