Namespaces
Variants
Actions

Difference between revisions of "Triangular summation method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m ("tex|done" behind other categories)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{MSC|40C05}}
 +
{{TEX|done}}
 +
 
A [[Matrix summation method|matrix summation method]] defined by a [[Triangular matrix|triangular matrix]]
 
A [[Matrix summation method|matrix summation method]] defined by a [[Triangular matrix|triangular matrix]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941601.png" /></td> </tr></table>
+
$$A=\| a_{nk}\|,\quad n,k=1,2,\ldots,$$
  
that is, by a matrix for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941602.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941603.png" />. A triangulation summation method is a special case of a [[Row-finite summation method|row-finite summation method]]. A triangular matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941604.png" /> is called normal if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941605.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941606.png" />. The transformation
+
that is, by a matrix for which $a_{nk}=0$ for $k>n$. A triangulation summation method is a special case of a [[Row-finite summation method|row-finite summation method]]. A triangular matrix $A$ is called normal if $a_{nn}\neq0$ for all $n$. The transformation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941607.png" /></td> </tr></table>
+
$$\sigma_n=\sum_{k=1}^na_{nk}s_k$$
  
realized by a normal triangular matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941608.png" /> has an inverse:
+
realized by a normal triangular matrix $A$ has an inverse:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t0941609.png" /></td> </tr></table>
+
$$s_n=\sum_{k=1}^na_{nk}^{-1}\sigma_k,$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t09416010.png" /> is the inverse of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094160/t09416011.png" />. This fact simplifies the proof of a number of theorems for matrix summation methods determined by normal triangular matrices. Related to the triangular summation methods are, e.g., the [[Cesàro summation methods|Cesàro summation methods]] and the [[Voronoi summation method|Voronoi summation method]].
+
where $A^{-1}=\| a_{nk}^{-1}\|$ is the inverse of $A$. This fact simplifies the proof of a number of theorems for matrix summation methods determined by normal triangular matrices. Related to the triangular summation methods are, e.g., the [[Cesàro summation methods|Cesàro summation methods]] and the [[Voronoi summation method|Voronoi summation method]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.H. Hardy,  "Divergent series" , Clarendon Press (1949)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.G. Cooke,  "Infinite matrices and sequence spaces" , Macmillan  (1950)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.A. Baron,  "Introduction to the theory of summability of series" , Tartu (1966)  (In Russian)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Ba}}||valign="top"| S.A. Baron,  "Introduction to the theory of summability of series", Tartu  (1966) (In Russian)
 +
|-
 +
|valign="top"|{{Ref|Co}}||valign="top"| R.G. Cooke,  "Infinite matrices and sequence spaces", Macmillan  (1950)
 +
|-
 +
|valign="top"|{{Ref|Ha}}||valign="top"| G.H. Hardy,  "Divergent series", Clarendon Press (1949)
 +
|-
 +
|}

Latest revision as of 10:25, 28 April 2012

2020 Mathematics Subject Classification: Primary: 40C05 [MSN][ZBL]

A matrix summation method defined by a triangular matrix

$$A=\| a_{nk}\|,\quad n,k=1,2,\ldots,$$

that is, by a matrix for which $a_{nk}=0$ for $k>n$. A triangulation summation method is a special case of a row-finite summation method. A triangular matrix $A$ is called normal if $a_{nn}\neq0$ for all $n$. The transformation

$$\sigma_n=\sum_{k=1}^na_{nk}s_k$$

realized by a normal triangular matrix $A$ has an inverse:

$$s_n=\sum_{k=1}^na_{nk}^{-1}\sigma_k,$$

where $A^{-1}=\| a_{nk}^{-1}\|$ is the inverse of $A$. This fact simplifies the proof of a number of theorems for matrix summation methods determined by normal triangular matrices. Related to the triangular summation methods are, e.g., the Cesàro summation methods and the Voronoi summation method.

References

[Ba] S.A. Baron, "Introduction to the theory of summability of series", Tartu (1966) (In Russian)
[Co] R.G. Cooke, "Infinite matrices and sequence spaces", Macmillan (1950)
[Ha] G.H. Hardy, "Divergent series", Clarendon Press (1949)
How to Cite This Entry:
Triangular summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Triangular_summation_method&oldid=15775
This article was adapted from an original article by I.I. Volkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article