Namespaces
Variants
Actions

Difference between revisions of "Weierstrass point"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 2: Line 2:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.G. Chebotarev,   "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Springer,   "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 {{MR|0092855}} {{ZBL|0078.06602}} </TD></TR></table>
  
  
Line 10: Line 10:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths,   J.E. Harris,   "Principles of algebraic geometry" , Wiley (Interscience) (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Arbarello,   M. Cornalba,   P.A. Griffiths,   J.E. Harris,   "Geometry of algebraic curves" , '''1''' , Springer (1985)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.C. Gunning,   "Lectures on Riemann surfaces" , Princeton Univ. Press (1966)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Arbarello, M. Cornalba, P.A. Griffiths, J.E. Harris, "Geometry of algebraic curves" , '''1''' , Springer (1985) {{MR|0770932}} {{ZBL|0559.14017}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.C. Gunning, "Lectures on Riemann surfaces" , Princeton Univ. Press (1966) {{MR|0207977}} {{ZBL|0175.36801}} </TD></TR></table>

Revision as of 21:57, 30 March 2012

A point on an algebraic curve (or on a Riemann surface) of genus at which the following condition is satisfied: There exists a non-constant rational function on which has at this point a pole of order not exceeding and which has no singularities at other points of . Only a finite number of Weierstrass points can exist on , and if is 0 or 1, there are no such points at all, while if , Weierstrass points must exist. These results were obtained for Riemann surfaces by K. Weierstrass. For algebraic curves of genus there always exist at least Weierstrass points, and only hyper-elliptic curves of genus have exactly Weierstrass points. The upper bound on the number of Weierstrass points is . The presence of a Weierstrass point on an algebraic curve of genus ensures the existence of a morphism of degree not exceeding from the curve onto the projective line .

References

[1] N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)
[2] G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 MR0092855 Zbl 0078.06602


Comments

References

[a1] P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001
[a2] E. Arbarello, M. Cornalba, P.A. Griffiths, J.E. Harris, "Geometry of algebraic curves" , 1 , Springer (1985) MR0770932 Zbl 0559.14017
[a3] R.C. Gunning, "Lectures on Riemann surfaces" , Princeton Univ. Press (1966) MR0207977 Zbl 0175.36801
How to Cite This Entry:
Weierstrass point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weierstrass_point&oldid=12917
This article was adapted from an original article by V.E. Voskresenskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article