Namespaces
Variants
Actions

Difference between revisions of "Intersection index (in algebraic geometry)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 17: Line 17:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.R. Shafarevich,   "Basic algebraic geometry" , Springer (1974) pp. Chapt. IV (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1974) pp. Chapt. IV (Translated from Russian) {{MR|0366917}} {{ZBL|0284.14001}} </TD></TR></table>

Revision as of 21:53, 30 March 2012

The number of points in the intersection of divisors (cf. Divisor) in an -dimensional algebraic variety with allowance for the multiplicities of these points. More precisely, let be an -dimensional non-singular algebraic variety over a field , and let be effective divisors in that intersect in a finite number of points. The local index (or multiplicity) of intersection of these divisors at a point is the integer

where is the local equation for the divisor in the local ring . In the complex case, the local index coincides with the residue of the form , and also with the degree of the germ of the mapping (cf. Degree of a mapping)

The global intersection index is the sum of the local indices over all points of the intersection . If this intersection is not empty, then .

See also Intersection theory.


Comments

References

[a1] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1974) pp. Chapt. IV (Translated from Russian) MR0366917 Zbl 0284.14001
How to Cite This Entry:
Intersection index (in algebraic geometry). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Intersection_index_(in_algebraic_geometry)&oldid=18849
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article