Namespaces
Variants
Actions

Difference between revisions of "Hodge theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 18: Line 18:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.V.D. Hodge,   "The topological invariants of algebraic varieties" , ''Proc. Internat. Congress Mathematicians (Cambridge, 1950)'' , '''1''' , Amer. Math. Soc. (1952) pp. 182–192</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W.V.D. Hodge,   "The theory and application of harmonic integrals" , Cambridge Univ. Press (1962)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A. Griffiths,   J.E. Harris,   "Principles of algebraic geometry" , '''1''' , Wiley (Interscience) (1978)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G. de Rham,   "Differentiable manifolds" , Springer (1984) (Translated from French)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.V.D. Hodge, "The topological invariants of algebraic varieties" , ''Proc. Internat. Congress Mathematicians (Cambridge, 1950)'' , '''1''' , Amer. Math. Soc. (1952) pp. 182–192 {{MR|0046075}} {{ZBL|0048.41701}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W.V.D. Hodge, "The theory and application of harmonic integrals" , Cambridge Univ. Press (1962) {{MR|1015714}} {{MR|0051571}} {{MR|0003947}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , '''1''' , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G. de Rham, "Differentiable manifolds" , Springer (1984) (Translated from French) {{MR|}} {{ZBL|0534.58003}} </TD></TR></table>
  
  
Line 26: Line 26:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.O. Wells jr.,   "Differential analysis on complex manifolds" , Springer (1980)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) {{MR|0608414}} {{ZBL|0435.32004}} </TD></TR></table>

Revision as of 21:53, 30 March 2012

Hodge's index theorem: The index (signature) of a compact Kähler manifold of complex dimension can be computed by the formula

where is the dimension of the space of harmonic forms of type on (cf. Harmonic form). This was proved by W.V.D. Hodge .

Hodge's theorem on the decomposition of the space of smooth sections of an elliptic complex on a compact manifold into the orthogonal direct sum of subspaces of harmonic exact and co-exact sections (see Laplace operator). This was proved by W.V.D. Hodge [2] for the de Rham complex

on an orientable compact Riemannian manifold . In this case Hodge's theorem asserts that for any the space of harmonic forms on is finite-dimensional and that there exists a unique operator (the Green–de Rham operator) satisfying the conditions

(the Hodge decomposition). In particular, is isomorphic to the real cohomology space of . Another important special case is the Hodge theorem for the Dolbeault complex on a compact complex manifold (see Differential form) [3]. These results lead to the classical Hodge structure in the cohomology spaces of a compact Kähler manifold.

References

[1] W.V.D. Hodge, "The topological invariants of algebraic varieties" , Proc. Internat. Congress Mathematicians (Cambridge, 1950) , 1 , Amer. Math. Soc. (1952) pp. 182–192 MR0046075 Zbl 0048.41701
[2] W.V.D. Hodge, "The theory and application of harmonic integrals" , Cambridge Univ. Press (1962) MR1015714 MR0051571 MR0003947
[3] P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , 1 , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001
[4] G. de Rham, "Differentiable manifolds" , Springer (1984) (Translated from French) Zbl 0534.58003


Comments

References

[a1] R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) MR0608414 Zbl 0435.32004
How to Cite This Entry:
Hodge theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hodge_theorem&oldid=13225
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article