Difference between revisions of "Homogeneous space of an algebraic group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
||
Line 6: | Line 6: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) {{MR|0181643}} {{ZBL|0143.05901}} {{ZBL|0128.26303}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.E. Humphreys, "Linear algebraic groups" , Springer (1975) {{MR|0396773}} {{ZBL|0325.20039}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.A. Sukhanov, "A description of observable subgroups of linear algebraic groups" ''Math. USSR-Sb.'' , '''68''' (Forthcoming) ''Mat. Sb.'' , '''137''' : 1 (1988) pp. 90–102</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Chow, "On the projective embedding of homogeneous varieties" , ''Algebraic topology; symposium in honour of S. Lefschetz'' , Princeton Univ. Press (1957) pp. 122–128 {{MR|0084851}} {{ZBL|0091.33302}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> G.P. Hochschild, "Basic theory of algebraic groups and Lie algebras" , Springer (1981) {{MR|0620024}} {{ZBL|0589.20025}} </TD></TR></table> |
Revision as of 14:50, 24 March 2012
An algebraic variety together with a regular transitive action of an algebraic group given on it. If , then the isotropy group is closed in . Conversely, if is a closed subgroup of an algebraic group , then the set of left cosets has the structure of an algebraic variety, making it into a homogeneous space of the algebraic group , where the natural mapping is regular, separable and has the following universal property: For any morphism constant on cosets, there is a morphism such that . If is any homogeneous space of the algebraic group and for some , then the natural bijection is regular, and if the ground field has characteristic 0, then is biregular (see [1], [3]).
Suppose that the connected group , the homogeneous space and the action of on are defined over some subfield . Then the group of -rational points takes into itself and for . If is finite, then , and if moreover the isotropy group is connected, then acts transitively on . In the general case, the study of the -rational points in reduces to problems in the theory of Galois cohomology (see [2]).
A homogeneous space of an algebraic group is always a smooth quasi-projective variety (see [5]). If is an affine algebraic group, then the variety is projective if and only if is a parabolic subgroup in (see [3]). If is reductive, then the variety is affine if and only if the subgroup is reductive (see Matsushima criterion). A description is also known of the closed subgroups of a linear algebraic group over an algebraically closed field of characteristic 0 for which is quasi-affine (see [4], [6]).
References
[1] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[2] | J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964) MR0181643 Zbl 0143.05901 Zbl 0128.26303 |
[3] | J.E. Humphreys, "Linear algebraic groups" , Springer (1975) MR0396773 Zbl 0325.20039 |
[4] | A.A. Sukhanov, "A description of observable subgroups of linear algebraic groups" Math. USSR-Sb. , 68 (Forthcoming) Mat. Sb. , 137 : 1 (1988) pp. 90–102 |
[5] | W. Chow, "On the projective embedding of homogeneous varieties" , Algebraic topology; symposium in honour of S. Lefschetz , Princeton Univ. Press (1957) pp. 122–128 MR0084851 Zbl 0091.33302 |
[6] | G.P. Hochschild, "Basic theory of algebraic groups and Lie algebras" , Springer (1981) MR0620024 Zbl 0589.20025 |
Homogeneous space of an algebraic group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homogeneous_space_of_an_algebraic_group&oldid=14365