Namespaces
Variants
Actions

Difference between revisions of "Multinomial distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(MSC|60E99 Category:Distribution theory)
Line 1: Line 1:
 
''polynomial distribution''
 
''polynomial distribution''
 +
 +
{{MSC|60E99}}
 +
 +
[[Category:Distribution theory]]
  
 
The joint distribution of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653301.png" /> that is defined for any set of non-negative integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653302.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653303.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653304.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653305.png" />, by the formula
 
The joint distribution of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653301.png" /> that is defined for any set of non-negative integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653302.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653303.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653304.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065330/m0653305.png" />, by the formula

Revision as of 13:15, 21 March 2012

polynomial distribution

2020 Mathematics Subject Classification: Primary: 60E99 [MSN][ZBL]

The joint distribution of random variables that is defined for any set of non-negative integers satisfying the condition , , , by the formula

(*)

where (, ) are the parameters of the distribution. A multinomial distribution is a multivariate discrete distribution, namely the distribution for the random vector with (this distribution is in essence -dimensional, since it is degenerate in the Euclidean space of dimensions). A multinomial distribution is a natural generalization of a binomial distribution and coincides with the latter for . The name of the distribution is given because the probability (*) is the general term in the expansion of the multinomial . The multinomial distribution appears in the following probability scheme. Each of the random variables is the number of occurrences of one of the mutually exclusive events , , in repeated independent trials. If in each trial the probability of event is , , then the probability (*) is equal to the probability that in trials the events will appear times, respectively. Each of the random variables has a binomial distribution with mathematical expectation and variance .

The random vector has mathematical expectation and covariance matrix , where

(the rank of the matrix is because ). The characteristic function of a multinomial distribution is

For , the distribution of the vector with normalized components

tends to a certain multivariate normal distribution, while the distribution of the sum

(which is used in mathematical statistics to construct the "chi-squared" test) tends to the "chi-squared" distribution with degrees of freedom.

References

[1] H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)


Comments

References

[a1] N.L. Johnson, S. Kotz, "Discrete distributions" , Wiley (1969)
How to Cite This Entry:
Multinomial distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multinomial_distribution&oldid=11687
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article