|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803501.png" /> be a finite-dimensional [[Central simple algebra|central simple algebra]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803502.png" />. A finite extension field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803503.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803504.png" /> is a splitting field for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803505.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803506.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803507.png" />-algebras for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803508.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r0803509.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035010.png" />-algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035011.png" />-matrices. Choose an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035012.png" />. The reduced norm mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035013.png" /> is now defined by
| + | {{TEX|done}} |
| + | {{MSC|16H05}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035014.png" /></td> </tr></table>
| + | Let $A$ be a finite-dimensional |
| + | [[Central simple algebra|central simple algebra]] over $k$. A finite extension field $K$ of $k$ is a splitting field for $A$ if $\def\M{\textrm{M}} A\otimes_k K\simeq \M_m(K)$ as $K$-algebras for some $m$. Here $\M_m(K)$ is the $K$-algebra of $(m\times m)$-matrices. Choose an isomorphism $\def\phi{\varphi} \phi:A\otimes_k K \to \M_m(K)$. The reduced norm mapping $\def\Nrd{\textrm{Nrd}} \Nrd_{A/k}:A\to k$ is now defined by |
| | | |
− | and the reduced trace mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035015.png" /> is similarly defined by | + | $$\Nrd_{A/k}(a) = \det(\phi(a\otimes 1)),$$ |
| + | and the reduced trace mapping $\def\Trd{\textrm{Trd}} \Trd_{A/k}(a)$ is similarly defined by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035016.png" /></td> </tr></table>
| + | $$\Trd_{A/k}(a) = \textrm{trace}(\phi(a\otimes1)).$$ |
| + | One checks that the right-hand sides of these equations are indeed in $k$ (and not just in $K$) and that the definitions are independent of the choices of $\phi$ and $K$. |
| | | |
− | One checks that the right-hand sides of these equations are indeed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035017.png" /> (and not just in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035018.png" />) and that the definitions are independent of the choices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035020.png" />.
| + | The reduced norm is multiplicative, and $a\in A$ is invertible if and only if $\Nrd_{A/k}(a) \ne 0$. The reduced trace is a homomorphism of $k$-vector spaces, and $(x,y)\mapsto \Trd_{A/k}(xy)$ defines a non-degenerate bilinear form on $A$. |
− | | |
− | The reduced norm is multiplicative, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035021.png" /> is invertible if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035022.png" />. The reduced trace is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035023.png" /> vector spaces, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035024.png" /> defines a non-degenerate bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035025.png" />. | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bass, "Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035026.png" />-theory" , Benjamin (1967) pp. 152ff</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.J. Hahn, O.T. O'Meara, "The classical groups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080350/r08035027.png" />-theory" , Springer (1979) pp. §2.2D</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ba}}||valign="top"| H. Bass, "Algebraic K-theory", Benjamin (1967) pp. 152ff {{MR|0279159}} {{ZBL|0226.13006}} |
| + | |- |
| + | |valign="top"|{{Ref|HaOM}}||valign="top"| A.J. Hahn, O.T. O'Meara, "The classical groups and $K$-theory", Springer (1979) pp. §2.2D {{MR|1007302}} {{ZBL|0683.20033}} |
| + | |- |
| + | |} |
Revision as of 22:30, 2 March 2012
2020 Mathematics Subject Classification: Primary: 16H05 [MSN][ZBL]
Let $A$ be a finite-dimensional
central simple algebra over $k$. A finite extension field $K$ of $k$ is a splitting field for $A$ if $\def\M{\textrm{M}} A\otimes_k K\simeq \M_m(K)$ as $K$-algebras for some $m$. Here $\M_m(K)$ is the $K$-algebra of $(m\times m)$-matrices. Choose an isomorphism $\def\phi{\varphi} \phi:A\otimes_k K \to \M_m(K)$. The reduced norm mapping $\def\Nrd{\textrm{Nrd}} \Nrd_{A/k}:A\to k$ is now defined by
$$\Nrd_{A/k}(a) = \det(\phi(a\otimes 1)),$$
and the reduced trace mapping $\def\Trd{\textrm{Trd}} \Trd_{A/k}(a)$ is similarly defined by
$$\Trd_{A/k}(a) = \textrm{trace}(\phi(a\otimes1)).$$
One checks that the right-hand sides of these equations are indeed in $k$ (and not just in $K$) and that the definitions are independent of the choices of $\phi$ and $K$.
The reduced norm is multiplicative, and $a\in A$ is invertible if and only if $\Nrd_{A/k}(a) \ne 0$. The reduced trace is a homomorphism of $k$-vector spaces, and $(x,y)\mapsto \Trd_{A/k}(xy)$ defines a non-degenerate bilinear form on $A$.
References
How to Cite This Entry:
Reduced norm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reduced_norm&oldid=13357