|
|
(3 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | One of the central principles of Diophantine geometry, which reduces the problem of the existence of rational points on an algebraic variety over a global field to the analogous problem over local fields.
| + | {{MSC|11Dxx|11Gxx}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466701.png" /> be a class of algebraic varieties over a global field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466702.png" />. The Hasse principle holds in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466703.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466704.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466705.png" /> such that for all non-trivial absolute valuations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466706.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466707.png" /> the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466708.png" />-rational points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h0466709.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667010.png" /> is non-empty, the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667011.png" />-rational points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667012.png" /> is also not empty (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667013.png" /> is the completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667014.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667015.png" />). In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667016.png" /> is the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667017.png" /> of rational numbers, then if the set of real points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667018.png" /> and the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667019.png" />-adic points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667020.png" />, for all primes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667021.png" />, are not empty, it follows that the set of rational points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667022.png" /> is also not empty. The Hasse principle holds for quadrics [[#References|[2]]], and so it is valid for algebraic curves of genus 0 (see [[#References|[3]]]). For quadrics over a number field the Hasse principle was stated and proved by H. Hasse in [[#References|[1]]]. For cubic hypersurfaces the Hasse principle is not true, in general (see [[#References|[3]]], [[#References|[4]]]); a counterexample (over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667023.png" />) is the projective curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667024.png" /> or the projective surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667025.png" />.
| + | The Hasse principle is one of the central principles of Diophantine |
| + | geometry, which reduces the problem of the existence of rational |
| + | points on an algebraic variety over a global field to the analogous |
| + | problem over local fields. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667026.png" /> be an algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667027.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667028.png" /> be the class of algebraic varieties consisting of all principal homogeneous spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667029.png" /> (see [[Galois cohomology|Galois cohomology]]; [[Weil–Châtelet group|Weil–Châtelet group]], and also [[#References|[2]]], [[#References|[3]]], [[#References|[5]]]). One says that the Hasse principle holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667030.png" /> if it holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667031.png" />. The Hasse principle holds for simply-connected and adjoint semi-simple algebraic groups over number fields ([[#References|[5]]], [[#References|[6]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667032.png" /> is an Abelian variety, then the Hasse principle holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667033.png" /> if and only if the Shafarevich–Tate group (cf. [[Galois cohomology|Galois cohomology]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667034.png" /> vanishes (see the examples in [[#References|[7]]], [[#References|[8]]]). | + | Let $M$ be a class of algebraic varieties over a global field $K$. The |
| + | Hasse principle holds in $M$ if for any $X$ in $M$ such that for all |
| + | non-trivial absolute valuations $\nu$ on $K$ the set of $K_\nu$-rational |
| + | points $X(K_\nu)$ of $X$ is non-empty, the set of $K$-rational points $X(K)$ is |
| + | also not empty (where $K_\nu$ is the completion of $K$ relative to |
| + | $\nu$). In particular, if $K$ is the field $\Q$ of rational numbers, then |
| + | if the set of real points $X(\R)$ and the set of $p$-adic points $\Q_p$, for |
| + | all primes $p$, are not empty, it follows that the set of rational |
| + | points $X(\Q)$ is also not empty. The Hasse principle holds for quadrics |
| + | {{Cite|CaFr}}, and so it is valid for algebraic curves of genus |
| + | 0 (see |
| + | {{Cite|Ca}}). For quadrics over a number field the Hasse |
| + | principle was stated and proved by H. Hasse in |
| + | {{Cite|Ha}}. For cubic hypersurfaces the Hasse principle is |
| + | not true, in general (see |
| + | {{Cite|Ca}}, |
| + | {{Cite|Ma}}); a counterexample (over $\Q$) is the projective |
| + | curve $3x^3+4y^3+5z^3 = 0$ or the projective surface $5x^3+12y^3+9z^3+10t^3=0$. |
| + | |
| + | Let $G$ be an algebraic group over $K$ and let $M(G)$ be the class of |
| + | algebraic varieties consisting of all principal homogeneous spaces |
| + | over $G$ (see |
| + | [[Galois cohomology|Galois cohomology]]; |
| + | [[Weil–Châtelet group|Weil–Châtelet group]], and also |
| + | {{Cite|CaFr}}, |
| + | {{Cite|Ca}}, |
| + | {{Cite|Se}}). One says that the Hasse principle holds for $G$ |
| + | if it holds for $M(G)$. The Hasse principle holds for simply-connected |
| + | and adjoint semi-simple algebraic groups over number fields |
| + | ({{Cite|Se}}, |
| + | {{Cite|Ch}}). If $G$ is an Abelian variety, then the Hasse |
| + | principle holds for $G$ if and only if the Shafarevich–Tate group (cf. |
| + | [[Galois cohomology|Galois cohomology]]) of $G$ vanishes (see the |
| + | examples in |
| + | {{Cite|Ru}}, |
| + | {{Cite|Ko}}). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'' , '''153''' (1924) pp. 113–130</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels, "Diophantine equations with special reference to elliptic curves" ''J. London Math. Soc.'' , '''41''' (1966) pp. 193–291</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.I. Manin, "Cubic forms. Algebra, geometry, arithmetic" , North-Holland (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.-P. Serre, "Cohomologie Galoisienne" , Springer (1964)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> V. Chernusov, "The Hasse principle for groups of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667035.png" />" , Minsk (1988) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> K. Rubin, "Tate–Shafarevich groups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046670/h04667036.png" />-functions of elliptic curves with complex multiplication" ''Invent. Math.'' , '''89''' (1987) pp. 527–560</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> V. Kolyvagin, "The Mordell–Weil groups and the Shafarevich–Tate groups of Weil's elliptic curves" ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''52''' : 6 (1988)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ca}}||valign="top"| J.W.S. Cassels, "Diophantine equations with special reference to elliptic curves" ''J. London Math. Soc.'', '''41''' (1966) pp. 193–291 |
| + | |- |
| + | |valign="top"|{{Ref|CaFr}}||valign="top"| J.W.S. Cassels (ed.) A. Fröhlich (ed.), ''Algebraic number theory'', Acad. Press (1967) |
| + | |- |
| + | |valign="top"|{{Ref|Ch}}||valign="top"| V. Chernusov, "The Hasse principle for groups of type $E_8$", Minsk (1988) (In Russian) |
| + | |- |
| + | |valign="top"|{{Ref|Ha}}||valign="top"| H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'', '''153''' (1924) pp. 113–130 |
| + | |- |
| + | |valign="top"|{{Ref|Ko}}||valign="top"| V. Kolyvagin, "The Mordell–Weil groups and the Shafarevich–Tate groups of Weil's elliptic curves" ''Izv. Akad. Nauk. SSSR Ser. Mat.'', '''52''' : 6 (1988) |
| + | |- |
| + | |valign="top"|{{Ref|Ma}}||valign="top"| Yu.I. Manin, "Cubic forms. Algebra, geometry, arithmetic", North-Holland (1974) (Translated from Russian) |
| + | |- |
| + | |valign="top"|{{Ref|Ru}}||valign="top"| K. Rubin, "Tate–Shafarevich groups and $L$-functions of elliptic curves with complex multiplication" ''Invent. Math.'', '''89''' (1987) pp. 527–560 |
| + | |- |
| + | |valign="top"|{{Ref|Se}}||valign="top"| J.-P. Serre, "Cohomologie Galoisienne", Springer (1964) |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 11Dxx Secondary: 11Gxx [MSN][ZBL]
The Hasse principle is one of the central principles of Diophantine
geometry, which reduces the problem of the existence of rational
points on an algebraic variety over a global field to the analogous
problem over local fields.
Let $M$ be a class of algebraic varieties over a global field $K$. The
Hasse principle holds in $M$ if for any $X$ in $M$ such that for all
non-trivial absolute valuations $\nu$ on $K$ the set of $K_\nu$-rational
points $X(K_\nu)$ of $X$ is non-empty, the set of $K$-rational points $X(K)$ is
also not empty (where $K_\nu$ is the completion of $K$ relative to
$\nu$). In particular, if $K$ is the field $\Q$ of rational numbers, then
if the set of real points $X(\R)$ and the set of $p$-adic points $\Q_p$, for
all primes $p$, are not empty, it follows that the set of rational
points $X(\Q)$ is also not empty. The Hasse principle holds for quadrics
[CaFr], and so it is valid for algebraic curves of genus
0 (see
[Ca]). For quadrics over a number field the Hasse
principle was stated and proved by H. Hasse in
[Ha]. For cubic hypersurfaces the Hasse principle is
not true, in general (see
[Ca],
[Ma]); a counterexample (over $\Q$) is the projective
curve $3x^3+4y^3+5z^3 = 0$ or the projective surface $5x^3+12y^3+9z^3+10t^3=0$.
Let $G$ be an algebraic group over $K$ and let $M(G)$ be the class of
algebraic varieties consisting of all principal homogeneous spaces
over $G$ (see
Galois cohomology;
Weil–Châtelet group, and also
[CaFr],
[Ca],
[Se]). One says that the Hasse principle holds for $G$
if it holds for $M(G)$. The Hasse principle holds for simply-connected
and adjoint semi-simple algebraic groups over number fields
([Se],
[Ch]). If $G$ is an Abelian variety, then the Hasse
principle holds for $G$ if and only if the Shafarevich–Tate group (cf.
Galois cohomology) of $G$ vanishes (see the
examples in
[Ru],
[Ko]).
References
[Ca] |
J.W.S. Cassels, "Diophantine equations with special reference to elliptic curves" J. London Math. Soc., 41 (1966) pp. 193–291
|
[CaFr] |
J.W.S. Cassels (ed.) A. Fröhlich (ed.), Algebraic number theory, Acad. Press (1967)
|
[Ch] |
V. Chernusov, "The Hasse principle for groups of type $E_8$", Minsk (1988) (In Russian)
|
[Ha] |
H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper" J. Reine Angew. Math., 153 (1924) pp. 113–130
|
[Ko] |
V. Kolyvagin, "The Mordell–Weil groups and the Shafarevich–Tate groups of Weil's elliptic curves" Izv. Akad. Nauk. SSSR Ser. Mat., 52 : 6 (1988)
|
[Ma] |
Yu.I. Manin, "Cubic forms. Algebra, geometry, arithmetic", North-Holland (1974) (Translated from Russian)
|
[Ru] |
K. Rubin, "Tate–Shafarevich groups and $L$-functions of elliptic curves with complex multiplication" Invent. Math., 89 (1987) pp. 527–560
|
[Se] |
J.-P. Serre, "Cohomologie Galoisienne", Springer (1964)
|