Namespaces
Variants
Actions

Difference between revisions of "Discrete distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(MSC|60E05 Category:Distribution theory)
({{MSC|60E05}} Category:Distribution theory (again))
Line 1: Line 1:
 +
{{MSC|60E05}}
  
 +
[[Category:Distribution theory]]
 +
 +
A probability distribution (concentrated) on a finite or countably infinite set of points of a [[Sampling space|sampling space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330601.png" />. More exactly, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330602.png" /> be the sample points and let
 +
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330603.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
 +
 +
be numbers satisfying the conditions
 +
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330604.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
 +
 +
Relations (1) and (2) fully define a discrete distribution on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330605.png" />, since the probability measure of any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330606.png" /> is defined by the equation
 +
 +
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330607.png" /></td> </tr></table>
 +
 +
Accordingly, the distribution of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330608.png" /> is said to be discrete if it assumes, with probability one, a finite or a countably infinite number of distinct values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d0330609.png" /> with probabilities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d03306010.png" />. In the case of a distribution on the real line, the distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d03306011.png" /> has jumps at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d03306012.png" /> equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d03306013.png" />, and is constant in the intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d03306014.png" />. The following discrete distributions occur most frequently: the [[Binomial distribution|binomial distribution]], the [[Geometric distribution|geometric distribution]], the [[Hypergeometric distribution|hypergeometric distribution]], the [[Negative binomial distribution|negative binomial distribution]], the [[Multinomial distribution|multinomial distribution]], and the [[Poisson distribution|Poisson distribution]].
 +
 +
 +
 +
====Comments====
 +
A word of caution. In the Russian literature, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d03306015.png" />, whereas in Western literature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033060/d03306016.png" />. So the distribution functions are slightly different: left continuous in the Russian literature, and right continuous in the Western literature.

Revision as of 17:21, 8 February 2012

2020 Mathematics Subject Classification: Primary: 60E05 [MSN][ZBL]

A probability distribution (concentrated) on a finite or countably infinite set of points of a sampling space . More exactly, let be the sample points and let

(1)

be numbers satisfying the conditions

(2)

Relations (1) and (2) fully define a discrete distribution on the space , since the probability measure of any set is defined by the equation

Accordingly, the distribution of a random variable is said to be discrete if it assumes, with probability one, a finite or a countably infinite number of distinct values with probabilities . In the case of a distribution on the real line, the distribution function has jumps at the points equal to , and is constant in the intervals . The following discrete distributions occur most frequently: the binomial distribution, the geometric distribution, the hypergeometric distribution, the negative binomial distribution, the multinomial distribution, and the Poisson distribution.


Comments

A word of caution. In the Russian literature, , whereas in Western literature . So the distribution functions are slightly different: left continuous in the Russian literature, and right continuous in the Western literature.

How to Cite This Entry:
Discrete distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Discrete_distribution&oldid=20903
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article