Namespaces
Variants
Actions

Difference between revisions of "User:Rafael.greenblatt/sandbox"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
(starting to modify "Exterior algebra")
+
(starting to modify "[[Exterior algebra]]")
  
  
Line 14: Line 14:
 
$$
 
$$
  
The exterior  algebra does not depend on the choice of the basis and is denoted by $\wedge V$. The subspace  $\wedge^r V$ ($r=0,1,\ldots$) in $\wedge V$ generated by the  elements of the form $e_{i_1} \wedge \ldots \wedge e_{i_r}$ is said to be the $r$-th exterior power  of the space $V$. The following  equalities are valid: <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708018.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708019.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708020.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708021.png" />. In addition, <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708022.png" /> if <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708023.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708024.png" />. The elements of  the space <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708025.png" /> are said to be <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708027.png" />-vectors; they may  also be regarded as skew-symmetric <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708028.png" />-times  contravariant tensors in <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708029.png" /> (cf. [[Exterior  product|Exterior product]]).
+
The exterior  algebra does not depend on the choice of the basis and is denoted by $\wedge V$. The subspace  $\wedge^r V$ ($r=0,1,\ldots$) in $\wedge V$ generated by the  elements of the form $e_{i_1} \wedge \ldots \wedge e_{i_r}$ is said to be the $r$-th exterior power  of the space $V$. The following  equalities are valid: $ \dim \wedge^r V = () = C_n^r$, $r=0,\ldots,n$, $\wedge^r V =0$, $r>n$. In addition, $v \wedge u = (-1)^{rs}u \wedge v$ if $u \in \wedge^r V$, $v \in \wedge^s V$. The elements of  the space $\wedge^r V$ are said to be $r$-vectors; they may  also be regarded as skew-symmetric $r$-times  contravariant tensors in $V$ (cf. [[Exterior  product|Exterior product]]).
  
<img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708030.png"  />-vectors are closely connected with <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708031.png"  />-dimensional subspaces in <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708032.png" />: Linearly  independent systems of vectors <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708033.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708034.png" /> of <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708035.png" /> generate the same  subspace if and only if the <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708036.png" />-vectors <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708037.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708038.png" /> are proportional.  This fact served as one of the starting points in the studies of H.  Grassmann [[#References|[1]]], who introduced exterior algebras as the  algebraic apparatus to describe the generation of multi-dimensional  subspaces by one-dimensional subspaces. The theory of determinants is  readily constructed with the aid of exterior algebras. An exterior  algebra may also be defined for more general objects, viz. for unitary  modules <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708039.png" /> over a  commutative ring <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708040.png" /> with identity  [[#References|[4]]]. The <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708041.png" />-th exterior power <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708042.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708043.png" />, of a module <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037
+
$r$-vectors are closely connected with $r$-dimensional subspaces in $V$: Linearly  independent systems of vectors $x_1,\ldots,x_r$ and $y_1,\ldots,y_r$ of $V$ generate the same  subspace if and only if the $r$-vectors $x_1\wedge \ldots \wedge x_r$ and $y_1\wedge \ldots \wedge y_r$ are proportional.  This fact served as one of the starting points in the studies of H.  Grassmann [[#References|[1]]], who introduced exterior algebras as the  algebraic apparatus to describe the generation of multi-dimensional  subspaces by one-dimensional subspaces. The theory of determinants is  readily constructed with the aid of exterior algebras. An exterior  algebra may also be defined for more general objects, viz. for unitary  modules $M$ over a  commutative ring $A$ with identity  [[#References|[4]]]. The $r$-th exterior power $\wedge^r M$, $r>0$, of a module $M$ is defined as the  quotient module of the $r$-th tensor power  of this module by the submodule generated by the elements of the form $x1 \otimes \ldots \otimes x_r$, where $x_i \in M$ and $x_j=x_k$ for certain $j \ne k$. The exterior  algebra for $M$ is defined as the  direct sum $\wedge M = \bigoplus_{r \ge 0}\wedge^r M$, where $\wedge^0 M = A$, with the  naturally introduced multiplication. In the case of a finite-dimensional  vector space this definition and the original definition are identical.  The exterior algebra of a module is employed in the theory of modules  over a principal ideal ring [[#References|[5]]].
/e037080/e03708044.png" /> is defined as the  quotient module of the <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708045.png" />-th tensor power  of this module by the submodule generated by the elements of the form <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708046.png" />, where <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708047.png" /> and <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708048.png" /> for certain <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708049.png" />. The exterior  algebra for <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708050.png" /> is defined as the  direct sum <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708051.png" />, where <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708052.png" />, with the  naturally introduced multiplication. In the case of a finite-dimensional  vector space this definition and the original definition are identical.  The exterior algebra of a module is employed in the theory of modules  over a principal ideal ring [[#References|[5]]].
 
  
The  Grassmann (or Plücker) coordinates of an <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708053.png"  />-dimensional subspace <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708054.png" /> in an <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708055.png" />-dimensional space <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708056.png" /> over <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708057.png" /> are defined as  the coordinates of the <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708058.png" />-vector in <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708059.png" /> corresponding to <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708060.png" />, which is defined  up to proportionality. Grassmann coordinates may be used to naturally  imbed the set of all <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708061.png" />-dimensional  subspaces in <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708062.png" /> into the  projective space of dimension <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708063.png" />, where it forms  an algebraic variety (called the [[Grassmann manifold|Grassmann  manifold]]). Thus one gets several important examples of projective  algebraic varieties [[#References|[6]]].
+
The  Grassmann (or Plücker) coordinates of an $r$-dimensional subspace $L$ in an $n$-dimensional space $V$ over $k$ are defined as  the coordinates of the $r$-vector in $V$ corresponding to $L$, which is defined  up to proportionality. Grassmann coordinates may be used to naturally  imbed the set of all <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708061.png" />-dimensional  subspaces in <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708062.png" /> into the  projective space of dimension <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708063.png" />, where it forms  an algebraic variety (called the [[Grassmann manifold|Grassmann  manifold]]). Thus one gets several important examples of projective  algebraic varieties [[#References|[6]]].
  
 
Exterior  algebras are employed in the calculus of exterior differential forms  (cf. [[Differential form|Differential form]]) as one of the basic  formalisms in differential geometry [[#References|[7]]],  [[#References|[8]]]. Many important results in algebraic topology are  formulated in terms of exterior algebras.
 
Exterior  algebras are employed in the calculus of exterior differential forms  (cf. [[Differential form|Differential form]]) as one of the basic  formalisms in differential geometry [[#References|[7]]],  [[#References|[8]]]. Many important results in algebraic topology are  formulated in terms of exterior algebras.

Latest revision as of 15:57, 25 January 2012

(starting to modify "Exterior algebra")


Grassmann algebra, of a vector space $V$ over a field $k$

An associative algebra over $k$, the operation in which is denoted by the symbol $\wedge$, with generating elements $1,e_1,\ldots,e_n$ where $e_1,\ldots,e_n$ is a basis of $V$, and with defining relations

$$ e_i \wedge e_j = - e_j \wedge e_i \qquad (i,j=1,\ldots,n), \qquad e_i \wedge e_i = 0, $$

$$ 1 \wedge e_i = e_i \wedge 1 = e_i \qquad (i=1,\ldots,n), \qquad \ \wedge 1 = 1. $$

The exterior algebra does not depend on the choice of the basis and is denoted by $\wedge V$. The subspace $\wedge^r V$ ($r=0,1,\ldots$) in $\wedge V$ generated by the elements of the form $e_{i_1} \wedge \ldots \wedge e_{i_r}$ is said to be the $r$-th exterior power of the space $V$. The following equalities are valid: $ \dim \wedge^r V = () = C_n^r$, $r=0,\ldots,n$, $\wedge^r V =0$, $r>n$. In addition, $v \wedge u = (-1)^{rs}u \wedge v$ if $u \in \wedge^r V$, $v \in \wedge^s V$. The elements of the space $\wedge^r V$ are said to be $r$-vectors; they may also be regarded as skew-symmetric $r$-times contravariant tensors in $V$ (cf. Exterior product).

$r$-vectors are closely connected with $r$-dimensional subspaces in $V$: Linearly independent systems of vectors $x_1,\ldots,x_r$ and $y_1,\ldots,y_r$ of $V$ generate the same subspace if and only if the $r$-vectors $x_1\wedge \ldots \wedge x_r$ and $y_1\wedge \ldots \wedge y_r$ are proportional. This fact served as one of the starting points in the studies of H. Grassmann [1], who introduced exterior algebras as the algebraic apparatus to describe the generation of multi-dimensional subspaces by one-dimensional subspaces. The theory of determinants is readily constructed with the aid of exterior algebras. An exterior algebra may also be defined for more general objects, viz. for unitary modules $M$ over a commutative ring $A$ with identity [4]. The $r$-th exterior power $\wedge^r M$, $r>0$, of a module $M$ is defined as the quotient module of the $r$-th tensor power of this module by the submodule generated by the elements of the form $x1 \otimes \ldots \otimes x_r$, where $x_i \in M$ and $x_j=x_k$ for certain $j \ne k$. The exterior algebra for $M$ is defined as the direct sum $\wedge M = \bigoplus_{r \ge 0}\wedge^r M$, where $\wedge^0 M = A$, with the naturally introduced multiplication. In the case of a finite-dimensional vector space this definition and the original definition are identical. The exterior algebra of a module is employed in the theory of modules over a principal ideal ring [5].

The Grassmann (or Plücker) coordinates of an $r$-dimensional subspace $L$ in an $n$-dimensional space $V$ over $k$ are defined as the coordinates of the $r$-vector in $V$ corresponding to $L$, which is defined up to proportionality. Grassmann coordinates may be used to naturally imbed the set of all -dimensional subspaces in into the projective space of dimension , where it forms an algebraic variety (called the Grassmann manifold). Thus one gets several important examples of projective algebraic varieties [6].

Exterior algebras are employed in the calculus of exterior differential forms (cf. Differential form) as one of the basic formalisms in differential geometry [7], [8]. Many important results in algebraic topology are formulated in terms of exterior algebras.

E.g., if is a finite-dimensional -space (e.g. a Lie group), the cohomology algebra of with coefficients in a field of characteristic zero is an exterior algebra with odd-degree generators. If is a simply-connected compact Lie group, then the ring , studied in -theory, is also an exterior algebra (over the ring of integers).

References

[1] H. Grassmann, "Gesammelte mathematische und physikalische Werke" , 1 , Teubner (1894–1896) pp. Chapt. 1; 2
[2] A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian)
[3] L.A. Kaluzhnin, "Introduction to general algebra" , Moscow (1973) (In Russian)
[4] N. Bourbaki, "Elements of mathematics. Algebra: Multilinear algebra" , Addison-Wesley (1966) pp. Chapt. 2 (Translated from French)
[5] N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)
[6] W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , 1–3 , Cambridge Univ. Press (1947–1954)
[7] S.P. Finikov, "Cartan's method of exterior forms in differential geometry" , 1–3 , Moscow-Leningrad (1948) (In Russian)
[8] S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)


Comments

Anticommuting variables (, ) are sometimes called Grassmann variables; especially in the context of superalgebras, super-manifolds, etc. (cf. Super-manifold; Superalgebra). In addition the phrase fermionic variables occurs; especially in theoretical physics.

References

[a1] C. Chevalley, "The construction and study of certain important algebras" , Math. Soc. Japan (1955)
How to Cite This Entry:
Rafael.greenblatt/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rafael.greenblatt/sandbox&oldid=20480