Difference between revisions of "Tamagawa number"
Ulf Rehmann (talk | contribs) |
Ulf Rehmann (talk | contribs) m (→References: MR+Zbl) |
||
Line 20: | Line 20: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press ( | + | <table><TR><TD valign="top">[1]</TD> |
− | + | <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.), ''Algebraic number theory'', Acad. Press (1967) | {{MR|0215665}} | {{ZBL|0153.07403}} </TD> | |
− | + | </TR><TR><TD valign="top">[2]</TD> | |
+ | <TD valign="top">Pjateckiĭ-Šapiro, I. I., ''Arithmetic groups and automorphic functions'', Moscow (1969) (In Russian; translated from English and French) | {{MR|0237437}} | {{ZBL|0194.52302}} </TD> | ||
+ | </TR><TR><TD valign="top">[3]</TD> | ||
+ | <TD valign="top"> A. Weil, ''Sur certains groupes d'opérateurs unitaires'' Acta Math., '''111''' (1964) pp. 143 211 | {{MR|0165033}} | {{ZBL|0203.03305}}</TD> | ||
+ | </TR><TR><TD valign="top">[4]</TD> | ||
+ | <TD valign="top"> A. Weil, ''Sur la formule de Siegel dans la théorie des groupes classiques'' Acta Math. , '''113''' (1965) pp. 1 87 | {{MR|0223373}} | {{ZBL|0161.02304}} </TD> | ||
+ | </TR><TR><TD valign="top">[5]</TD> | ||
+ | <TD valign="top"> V.P. Platonov, ''Arithmetic theory of algebraic groups'' Russian Math. Surveys, '''37''' : 3 (1982) pp. 1 62 ''Uspekhi Mat. Nauk'' , '''37''' : 3 (1982) pp. 3 54 | {{MR|0659426}} | {{ZBL|0513.20028}} </TD> | ||
+ | </TR><TR><TD valign="top">[6]</TD> | ||
+ | <TD valign="top"> G. Harder, ''Chevalley groups over function fields and automorphic forms'' Ann. of Math. , '''100''' (1974) pp. 249 306 | {{MR|0563090}} | {{ZBL|0309.14041}} </TD> | ||
+ | </TR><TR><TD valign="top">[7]</TD> | ||
+ | <TD valign="top"> J.G.M. Mars, ''The Tamagawa number of ${}^2A_n$'' Ann. of Math., '''89''' (1969) pp. 557 574 | {{MR|0263828}} | {{ZBL|0193.21502}} </TD> | ||
+ | </TR><TR><TD valign="top">[8]</TD> | ||
+ | <TD valign="top"> T. Ono, ''On the Tamagawa number of algebraic tori'' Ann. of Math., '''78''' (1963) pp. 47 73 | {{MR|0156851}} | {{ZBL|0122.39101}} </TD> | ||
+ | </TR><TR><TD valign="top">[9]</TD> | ||
+ | <TD valign="top"> T. Ono, ''On the relative theory of Tamagawa numbers'' Ann. of Math., '''82''' (1965) pp. 88 111 | {{MR|0177991}} | {{ZBL|0135.08804}} </TD> | ||
+ | </TR></table> | ||
====Comments==== | ====Comments==== |
Revision as of 23:21, 22 December 2011
2020 Mathematics Subject Classification: Primary: 1F70 Secondary: 11E7222E55 [MSN][ZBL]
The volume of a homogeneous space $G_A^{(1)}/G_K$ associated with the group of adèles (cf. Adèle) of a connected linear algebraic group $G$ defined over a global field $K$ with respect to the Tamagawa measure. Here $G_A^{(1)}/G_K$ is the subgroup of $G_A$ consisting of those adèles $g = (g_\nu)_{\nu\in V} \in G_A$ for which
$$\prod_{\nu \in V} | \chi(g_\nu)|_\nu = 1$$
for any character $\chi$ of $G$ which is defined over $K$ (the product is taken with respect to all valuations $\nu$ in the set $V$ of normalized valuations of $K$). The finiteness of the Tamagawa number follows from reduction theory (see [5]).
When describing the values of $\tau(G)$ it is convenient to distinguish the cases of unipotent groups, algebraic tori and semi-simple groups. For unipotent groups the Tamagawa number is always equal to 1. If $T$ is an algebraic $K$-torus, then
$$\tau(T) = { { [H^1(K,\hat T)] }\over{[{\rm Shaf}(T)] } }$$
where $ [H^1(K,\hat T)]$ and $[{\rm Shaf}(T)]$ are the order of the one-dimensional Galois cohomology group of the module of rational characters $\hat T$ of the torus $T$ and the order of its Shafarevich Tate group, respectively. On the basis of this formula an example was constructed of a torus for which $\tau(T)$ is not an integer [8]. The determination of the Tamagawa number of a semi-simple group over a number field can be reduced to the case of a simply-connected group [9]: Let $G$ be a semi-simple $K$-group, let $\pi : \hat G \to G$ be the universal covering which is defined over $K$, let $F = {\rm Ker}\; \pi$ be the fundamental group of $G$, and let $\hat F$ be its character group; then
$$\tau(G) = \tau(\hat G) { {h^0(\hat F) }\over{i^1(\hat F)}},$$
where $h^0(\hat F) = [H^0(K,F)]$, and $i^1(\hat F)$ is the order of the kernel of the canonical mapping $$H^1(K,\hat F) \to \prod_{\nu\in V} H^1(K_\nu,\hat F).$$ It is the conjectured that for all simply-connected groups the Tamagawa number is equal to 1 (the Weil conjecture). This was proved for most types of simple groups over number fields ([3], [4], [7]), and also for Chevalley groups over number fields (see [2]) and over global function fields [6].
References
[1] | J.W.S. Cassels (ed.) A. Fröhlich (ed.), Algebraic number theory, Acad. Press (1967) | MR0215665 | Zbl 0153.07403 |
[2] | Pjateckiĭ-Šapiro, I. I., Arithmetic groups and automorphic functions, Moscow (1969) (In Russian; translated from English and French) | MR0237437 | Zbl 0194.52302 |
[3] | A. Weil, Sur certains groupes d'opérateurs unitaires Acta Math., 111 (1964) pp. 143 211 | MR0165033 | Zbl 0203.03305 |
[4] | A. Weil, Sur la formule de Siegel dans la théorie des groupes classiques Acta Math. , 113 (1965) pp. 1 87 | MR0223373 | Zbl 0161.02304 |
[5] | V.P. Platonov, Arithmetic theory of algebraic groups Russian Math. Surveys, 37 : 3 (1982) pp. 1 62 Uspekhi Mat. Nauk , 37 : 3 (1982) pp. 3 54 | MR0659426 | Zbl 0513.20028 |
[6] | G. Harder, Chevalley groups over function fields and automorphic forms Ann. of Math. , 100 (1974) pp. 249 306 | MR0563090 | Zbl 0309.14041 |
[7] | J.G.M. Mars, The Tamagawa number of ${}^2A_n$ Ann. of Math., 89 (1969) pp. 557 574 | MR0263828 | Zbl 0193.21502 |
[8] | T. Ono, On the Tamagawa number of algebraic tori Ann. of Math., 78 (1963) pp. 47 73 | MR0156851 | Zbl 0122.39101 |
[9] | T. Ono, On the relative theory of Tamagawa numbers Ann. of Math., 82 (1965) pp. 88 111 | MR0177991 | Zbl 0135.08804 |
Comments
The Shafarevich Tate group is also called Tate Shafarevich group; cf. Galois cohomology for its definition.
For the relation between $\tau(G)$ and $\tau(\hat G)$ see [a1].
Weil's conjecture has been proved by R. Kottwitz [a2] for number fields, modulo the validity of the Hasse principle. (The latter has also been established.)
References
[a1] | R.E. Kottwitz, "Stable trace formula: cuspidal tempered terms" Duke Math. J. , 51 (1984) pp. 611 650 |
[a2] | R.E. Kottwitz, "Tamagawa numbers" Ann. of Math. , 127 (1988) pp. 629 646 |
Tamagawa number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tamagawa_number&oldid=19903