|
|
Line 1: |
Line 1: |
− | ''linear form, on a [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592401.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592402.png" />'' | + | ''linear form, on a |
| + | [[Vector space|vector space]] $L$ over a field $k$'' |
| | | |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592403.png" /> such that | + | A mapping $f:L\to k$ such that |
| + | $$\def\l{\lambda} f(x+y) = f(x)+f(y), f(\l x) = \l f(x),$$ |
| + | for all $x,y\in L$, $\l \in k$. The concept of a |
| + | linear functional, as an important special case of the concept of a |
| + | [[Linear operator|linear operator]], is one of the main concepts in |
| + | linear algebra and plays a significant role in analysis. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592404.png" /></td> </tr></table>
| + | On the set $L^\#$ of linear functionals on $L$ the operations of addition |
| + | and multiplication by a scalar are defined according to the formulas |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592406.png" />. The concept of a linear functional, as an important special case of the concept of a [[Linear operator|linear operator]], is one of the main concepts in linear algebra and plays a significant role in analysis.
| + | $$(f+g)(x) = f(x) + g(x), (\l f)(x) = \l f(x),$$ |
| | | |
− | On the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592407.png" /> of linear functionals on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592408.png" /> the operations of addition and multiplication by a scalar are defined according to the formulas
| + | $$f,g\in L^\#,\quad x\in L,\quad \l\in k.$$ |
| + | They specify in $L^\#$ a vector space structure over $k$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l0592409.png" /></td> </tr></table>
| + | The kernel of a linear functional is the subspace $\ker f = \{x\in L: f(x)=0\}$. If $f\ne 0 \in L^\#$ (that |
| + | is, $f(x) \not\equiv 0\in k$), then $\ker f$ is a hyperplane in $L$. Linear functionals with the |
| + | same kernel are proportional. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924010.png" /></td> </tr></table>
| + | If $\{e_\nu : \nu \in \def\L{\Lambda} \L$ is a basis of $L$, then for |
| + | $$x=\sum_{i=1}^n\l_{\nu_i}e_{\nu_i},\quad \l_{\nu_i}\in k,\quad |
| + | f(x)=\sum_{i=1}^n\l_{\nu_i}f(e_{\nu_i}).$$ |
| + | The correspondence $f\to \{f(x_\nu): \nu\in\L\}$ is an |
| + | isomorphism of $L^\#$ onto $k^\L$. Corollary: $L$ is isomorphic to $L^\#$ if |
| + | and only if it is finite dimensional. On transition to a new basis in |
| + | $L$ the elements $f(e_\nu)\in k$ are transformed by the same formulas as the basis |
| + | vectors. |
| | | |
− | They specify in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924011.png" /> a vector space structure over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924012.png" />.
| + | The operator $Q_L:L\to (L^\#)^\#$ defined by $Q_Lx(f) = f(x)$ is injective. It is an isomorphism if |
| + | and only if $L$ is finite dimensional. This isomorphism, in contrast |
| + | to the isomorphism between $L$ and $L^\#$, is natural, i.e. functorial |
| + | (cf. |
| + | [[Functorial morphism|Functorial morphism]]). |
| | | |
− | The kernel of a linear functional is the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924014.png" /> (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924015.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924016.png" /> is a hyperplane in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924017.png" />. Linear functionals with the same kernel are proportional.
| + | A linear functional on a |
| + | [[Locally convex space|locally convex space]], in particular on a |
| + | normed space, is an important object of study in functional |
| + | analysis. Every continuous (as a mapping on topological spaces) linear |
| + | functional $f$ on a locally convex space $E$ is bounded (cf. |
| + | [[Bounded operator|Bounded operator]]), that is, |
| + | $$ \sup_{x\in M} |f(x)| < \infty$$ |
| + | for all bounded |
| + | $M\subset E$. If $E$ is a |
| + | [[Normed space|normed space]], the converse is also true; both |
| + | properties are then equivalent to the finiteness of the number |
| + | $$\|f\| = \sup \{| f(x) | : \|x\|\le 1\}.$$ |
| + | The continuous linear functionals on a locally convex space $E$ form a |
| + | subspace $E^*$ of $E^\#$, which is said to be the dual of $E$. In $E^*$ one |
| + | considers different topologies, including the weak and strong |
| + | topologies, which correspond, respectively, to pointwise and uniform |
| + | convergence on bounded sets. If $E$ is a normed space, then $E^*$ is a |
| + | [[Banach space|Banach space]] with respect to the norm $\|f\|$ and the |
| + | corresponding topology coincides with the strong topology. The unit |
| + | ball $\{f:\|f\|\le 1\}$, considered in the weak topology, is compact. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924018.png" /> is a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924019.png" />, then for | + | The |
| + | [[Hahn–Banach theorem|Hahn–Banach theorem]] has important applications |
| + | in analysis; one formulation of it is as follows: If $\|.\|$ is a |
| + | [[Pre-norm|pre-norm]] on a vector space $E$ and if $f_0$ is a linear |
| + | functional defined on a subspace $E_0$ of $E$ such that $|f_0(x)|\le \|x\|$ for all $x\in E_0$, |
| + | then $f_0$ can be extended to the whole of $E$, preserving linearity and |
| + | the given bound. Corollary: Any continuous linear functional defined |
| + | on a subspace $E_0$ of a locally convex space $E$ can be extended to a |
| + | continuous linear functional on $E$, and if $E$ is a normed space, |
| + | then the norm is preserved. Hence, for every $x\in E$, $x\ne 0$, there is an $f\in E$ |
| + | with $f(x)\ne 0$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924020.png" /></td> </tr></table>
| + | Let $E$ be a normed space and suppose that $E^*$, and then $(E^*)^*$, are |
| + | taken with the corresponding norms. Then the operator |
| + | $$R_E:E\to (E^*)^*,\quad R_E x(F) = f(x)$$ |
| + | is an |
| + | isometric imbedding. If under this imbedding $E$ coincides with $(E^*)^*$, |
| + | then $E$, which is necessarily complete, is said to be reflexive (cf. |
| + | [[Reflexive space|Reflexive space]]). For example, $L_p[a,b]$ and $l_p$, $1\le p<\infty$, |
| + | are reflexive if and only if $p>1$. There is a similar concept of |
| + | reflexivity for general locally convex spaces. |
| | | |
− | The correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924021.png" /> is an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924022.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924023.png" />. Corollary: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924024.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924025.png" /> if and only if it is finite dimensional. On transition to a new basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924026.png" /> the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924027.png" /> are transformed by the same formulas as the basis vectors.
| + | For many locally convex spaces, all linear functionals have been |
− | | + | described. For example, the adjoint of a Hilbert space $H$ is $\{f:f(x)=(x,x_0) \textrm{ for a fixed } x_0\in H\}$. The |
− | The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924028.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924029.png" /> is injective. It is an isomorphism if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924030.png" /> is finite dimensional. This isomorphism, in contrast to the isomorphism between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924032.png" />, is natural, i.e. functorial (cf. [[Functorial morphism|Functorial morphism]]).
| + | adjoint of $C[a,b]$ is $\{f:f(x) = \int_a^b x(t)d\mu(t) \textrm{ for a fixed function of bounded variation } \mu(t)\}$. |
− | | |
− | A linear functional on a [[Locally convex space|locally convex space]], in particular on a normed space, is an important object of study in functional analysis. Every continuous (as a mapping on topological spaces) linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924033.png" /> on a locally convex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924034.png" /> is bounded (cf. [[Bounded operator|Bounded operator]]), that is,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924035.png" /></td> </tr></table>
| |
− | | |
− | for all bounded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924037.png" /> is a [[Normed space|normed space]], the converse is also true; both properties are then equivalent to the finiteness of the number
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924038.png" /></td> </tr></table>
| |
− | | |
− | The continuous linear functionals on a locally convex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924039.png" /> form a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924040.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924041.png" />, which is said to be the dual of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924042.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924043.png" /> one considers different topologies, including the weak and strong topologies, which correspond, respectively, to pointwise and uniform convergence on bounded sets. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924044.png" /> is a normed space, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924045.png" /> is a [[Banach space|Banach space]] with respect to the norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924046.png" /> and the corresponding topology coincides with the strong topology. The unit ball <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924047.png" />, considered in the weak topology, is compact.
| |
− | | |
− | The [[Hahn–Banach theorem|Hahn–Banach theorem]] has important applications in analysis; one formulation of it is as follows: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924048.png" /> is a [[Pre-norm|pre-norm]] on a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924049.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924050.png" /> is a linear functional defined on a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924051.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924052.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924053.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924054.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924055.png" /> can be extended to the whole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924056.png" />, preserving linearity and the given bound. Corollary: Any continuous linear functional defined on a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924057.png" /> of a locally convex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924058.png" /> can be extended to a continuous linear functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924059.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924060.png" /> is a normed space, then the norm is preserved. Hence, for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924062.png" />, there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924063.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924064.png" />.
| |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924065.png" /> be a normed space and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924066.png" />, and then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924067.png" />, are taken with the corresponding norms. Then the operator
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924068.png" /></td> </tr></table>
| |
− | | |
− | is an isometric imbedding. If under this imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924069.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924070.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924071.png" />, which is necessarily complete, is said to be reflexive (cf. [[Reflexive space|Reflexive space]]). For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924074.png" />, are reflexive if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924075.png" />. There is a similar concept of reflexivity for general locally convex spaces.
| |
− | | |
− | For many locally convex spaces, all linear functionals have been described. For example, the adjoint of a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924076.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924077.png" />. The adjoint of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924078.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059240/l05924079.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> |
| + | <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD> |
| + | </TR><TR><TD valign="top">[2]</TD> |
| + | <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD> |
| + | </TR></table> |
| | | |
| | | |
Line 54: |
Line 96: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> |
| + | <TD valign="top"> A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980)</TD> |
| + | </TR></table> |
linear form, on a
vector space $L$ over a field $k$
A mapping $f:L\to k$ such that
$$\def\l{\lambda} f(x+y) = f(x)+f(y), f(\l x) = \l f(x),$$
for all $x,y\in L$, $\l \in k$. The concept of a
linear functional, as an important special case of the concept of a
linear operator, is one of the main concepts in
linear algebra and plays a significant role in analysis.
On the set $L^\#$ of linear functionals on $L$ the operations of addition
and multiplication by a scalar are defined according to the formulas
$$(f+g)(x) = f(x) + g(x), (\l f)(x) = \l f(x),$$
$$f,g\in L^\#,\quad x\in L,\quad \l\in k.$$
They specify in $L^\#$ a vector space structure over $k$.
The kernel of a linear functional is the subspace $\ker f = \{x\in L: f(x)=0\}$. If $f\ne 0 \in L^\#$ (that
is, $f(x) \not\equiv 0\in k$), then $\ker f$ is a hyperplane in $L$. Linear functionals with the
same kernel are proportional.
If $\{e_\nu : \nu \in \def\L{\Lambda} \L$ is a basis of $L$, then for
$$x=\sum_{i=1}^n\l_{\nu_i}e_{\nu_i},\quad \l_{\nu_i}\in k,\quad
f(x)=\sum_{i=1}^n\l_{\nu_i}f(e_{\nu_i}).$$
The correspondence $f\to \{f(x_\nu): \nu\in\L\}$ is an
isomorphism of $L^\#$ onto $k^\L$. Corollary: $L$ is isomorphic to $L^\#$ if
and only if it is finite dimensional. On transition to a new basis in
$L$ the elements $f(e_\nu)\in k$ are transformed by the same formulas as the basis
vectors.
The operator $Q_L:L\to (L^\#)^\#$ defined by $Q_Lx(f) = f(x)$ is injective. It is an isomorphism if
and only if $L$ is finite dimensional. This isomorphism, in contrast
to the isomorphism between $L$ and $L^\#$, is natural, i.e. functorial
(cf.
Functorial morphism).
A linear functional on a
locally convex space, in particular on a
normed space, is an important object of study in functional
analysis. Every continuous (as a mapping on topological spaces) linear
functional $f$ on a locally convex space $E$ is bounded (cf.
Bounded operator), that is,
$$ \sup_{x\in M} |f(x)| < \infty$$
for all bounded
$M\subset E$. If $E$ is a
normed space, the converse is also true; both
properties are then equivalent to the finiteness of the number
$$\|f\| = \sup \{| f(x) | : \|x\|\le 1\}.$$
The continuous linear functionals on a locally convex space $E$ form a
subspace $E^*$ of $E^\#$, which is said to be the dual of $E$. In $E^*$ one
considers different topologies, including the weak and strong
topologies, which correspond, respectively, to pointwise and uniform
convergence on bounded sets. If $E$ is a normed space, then $E^*$ is a
Banach space with respect to the norm $\|f\|$ and the
corresponding topology coincides with the strong topology. The unit
ball $\{f:\|f\|\le 1\}$, considered in the weak topology, is compact.
The
Hahn–Banach theorem has important applications
in analysis; one formulation of it is as follows: If $\|.\|$ is a
pre-norm on a vector space $E$ and if $f_0$ is a linear
functional defined on a subspace $E_0$ of $E$ such that $|f_0(x)|\le \|x\|$ for all $x\in E_0$,
then $f_0$ can be extended to the whole of $E$, preserving linearity and
the given bound. Corollary: Any continuous linear functional defined
on a subspace $E_0$ of a locally convex space $E$ can be extended to a
continuous linear functional on $E$, and if $E$ is a normed space,
then the norm is preserved. Hence, for every $x\in E$, $x\ne 0$, there is an $f\in E$
with $f(x)\ne 0$.
Let $E$ be a normed space and suppose that $E^*$, and then $(E^*)^*$, are
taken with the corresponding norms. Then the operator
$$R_E:E\to (E^*)^*,\quad R_E x(F) = f(x)$$
is an
isometric imbedding. If under this imbedding $E$ coincides with $(E^*)^*$,
then $E$, which is necessarily complete, is said to be reflexive (cf.
Reflexive space). For example, $L_p[a,b]$ and $l_p$, $1\le p<\infty$,
are reflexive if and only if $p>1$. There is a similar concept of
reflexivity for general locally convex spaces.
For many locally convex spaces, all linear functionals have been
described. For example, the adjoint of a Hilbert space $H$ is $\{f:f(x)=(x,x_0) \textrm{ for a fixed } x_0\in H\}$. The
adjoint of $C[a,b]$ is $\{f:f(x) = \int_a^b x(t)d\mu(t) \textrm{ for a fixed function of bounded variation } \mu(t)\}$.
References
[1] |
N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) |
[2] |
A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) |
References
[a1] |
A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980) |