|
|
Line 1: |
Line 1: |
− | ''norm residue, Hilbert symbol'' | + | ''norm residue, Hilbert $a\in {K'}^*$ction that associates with an ordered pair of elements $x,y$ of the |
| + | multiplicative group $K^*$ of a |
| + | [[Local field|local field]] $K$ an element $(x,y)\in K^*$ that is an $n$-th root |
| + | of unity. This function can be defined as follows. Let $\zeta_n\in K$ be a |
| + | primitive $n$-th root of unity. The maximal Abelian extension $L$ of |
| + | $K$ with Galois group $G(L/K)$ of exponent $n$ is obtained by adjoining to |
| + | $K$ the roots $a^{1/n}$ for all $a\in K^*$. On the other hand, there is a canonical |
| + | isomorphism (the fundamental isomorphism of local |
| + | [[Class field theory|class field theory]]) |
| + | $$\theta:K^*/{K^*}^n \to \mathrm{Gal}(L/K).$$ |
| + | The norm residue of |
| + | the pair $(x,y)$ is defined by |
| + | $$\theta(y)(x^{1/n}) = (x,y)x^{1/n}.$$ |
| + | D. Hilbert introduced the concept of |
| + | a norm-residue symbol in the special case of quadratic fields with |
| + | $n=2$. In |
| + | [[#References|[4]]] there is an explicit definition of the norm |
| + | residue using only local class field theory. |
| | | |
− | A function that associates with an ordered pair of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673701.png" /> of the multiplicative group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673702.png" /> of a [[Local field|local field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673703.png" /> an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673704.png" /> that is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673705.png" />-th root of unity. This function can be defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673706.png" /> be a primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673707.png" />-th root of unity. The maximal Abelian extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673708.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n0673709.png" /> with Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737010.png" /> of exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737011.png" /> is obtained by adjoining to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737012.png" /> the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737013.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737014.png" />. On the other hand, there is a canonical isomorphism (the fundamental isomorphism of local [[Class field theory|class field theory]])
| + | Properties of the symbol $(x,y)$: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737015.png" /></td> </tr></table>
| + | 1) bilinearity: $(x_1x_2,y) = (x_1,y)(x_2,y),\quad (x,y_1y_2)=(x,y_1)(x,y_2)$; |
| | | |
− | The norm residue of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737016.png" /> is defined by
| + | 2) skew-symmetry: $(x,y)(y,x)=1$; |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737017.png" /></td> </tr></table>
| + | 3) non-degeneracy: $(x,y)=1$ for all $x\in K^*$ implies $y\in {K^*}^n$; $(x,y)=1$ for all $y\in K^*$ |
| + | implies $x\in {K^*}^n$; |
| | | |
− | D. Hilbert introduced the concept of a norm-residue symbol in the special case of quadratic fields with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737018.png" />. In [[#References|[4]]] there is an explicit definition of the norm residue using only local class field theory.
| + | 4) if $x+y=1$, then $(x,y)=1$; |
| | | |
− | Properties of the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737019.png" />:
| + | 5) if $\sigma$ is an automorphism of $K$, then |
| + | $$(\sigma x, \sigma y) = \sigma(x,y)$$ |
| + | 6) let $K'$ be a finite |
| + | extension of $K$, $a\in {K'}^*$ |
| + | and $b\in K^*$. Then |
| + | $$(a,b) = (N_{K'/K}(a),b)$$ |
| + | where on the left-hand side |
| + | the norm-residue symbol is regarded for $K'$ and on the right-hand side |
| + | that for $K$, and where $N_{K'/K}$ is the |
| + | [[Norm map|norm map]] from $K'$ into $K$; |
| | | |
− | 1) bilinearity: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737021.png" />;
| + | 7) $(x,y)=1$ implies that $y$ is a norm in the extension $K(x^{1/n})$. (This explains |
| + | the name of the symbol.) |
| | | |
− | 2) skew-symmetry: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737022.png" />;
| + | The function $(x,y)$ induces a non-degenerate bilinear pairing |
| + | $$K^*/{K^*}^n \times K^*/{K^*}^n \to \mu(n)$$ |
| + | where |
| + | $\mu(n)$ is the group of roots of unity generated by $\zeta_n$. Let $\Psi:K^*\times K^* \to A$ be a |
| + | mapping into some Abelian group $A$ satisfying 1), 4) and the |
| + | condition of continuity: For any $y\in K^*$ the set $\{x\in K^* | \Psi(x,y)=1\}$ is closed in $K^*$. The |
| + | norm-residue symbol has the following universal property |
| + | [[#References|[3]]]: If $n$ is the number of roots of unity in $K$, |
| + | then there exists a homomorphism $\phi:\mu(n) \to A$ such that for any $x,y\in K^*$, |
| + | $$\Psi(x,y) = \phi((x,y)).$$ |
| + | This |
| + | property can serve as a basic axiomatic definition of the norm-residue |
| + | symbol. |
| | | |
− | 3) non-degeneracy: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737023.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737024.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737025.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737026.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737027.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737028.png" />;
| + | If $F$ is a |
| + | [[Global field|global field]] and $K$ is the completion of $F$ |
| + | relative to a place $\nu$, then by the norm-residue symbol one also |
| + | means the function $(x,y)_\nu$ defined over $F^*\times F^*$ that is obtained by |
| + | composition of the (local) norm-residue symbol $(x,y)$ with the natural |
| + | imbedding $F^*\to K^*$. |
| | | |
− | 4) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737029.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737030.png" />;
| + | Often the norm-residue symbol is defined as an automorphism $\theta(x)$ of the |
− | | + | maximal Abelian extension of $K$ corresponding to an element $x\in K^*$ by |
− | 5) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737031.png" /> is an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737032.png" />, then
| + | local |
− | | + | [[Class field theory|class field theory]]. |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737033.png" /></td> </tr></table>
| |
− | | |
− | 6) let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737034.png" /> be a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737037.png" />. Then
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737038.png" /></td> </tr></table>
| |
− | | |
− | where on the left-hand side the norm-residue symbol is regarded for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737039.png" /> and on the right-hand side that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737040.png" />, and where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737041.png" /> is the [[Norm map|norm map]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737042.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737043.png" />;
| |
− | | |
− | 7) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737044.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737045.png" /> is a norm in the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737046.png" />. (This explains the name of the symbol.)
| |
− | | |
− | The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737047.png" /> induces a non-degenerate bilinear pairing
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737048.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737049.png" /> is the group of roots of unity generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737050.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737051.png" /> be a mapping into some Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737052.png" /> satisfying 1), 4) and the condition of continuity: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737053.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737054.png" /> is closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737055.png" />. The norm-residue symbol has the following universal property [[#References|[3]]]: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737056.png" /> is the number of roots of unity in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737057.png" />, then there exists a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737058.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737059.png" />,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737060.png" /></td> </tr></table>
| |
− | | |
− | This property can serve as a basic axiomatic definition of the norm-residue symbol.
| |
− | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737061.png" /> is a [[Global field|global field]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737062.png" /> is the completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737063.png" /> relative to a place <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737064.png" />, then by the norm-residue symbol one also means the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737065.png" /> defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737066.png" /> that is obtained by composition of the (local) norm-residue symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737067.png" /> with the natural imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737068.png" />.
| |
− | | |
− | Often the norm-residue symbol is defined as an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737069.png" /> of the maximal Abelian extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737070.png" /> corresponding to an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737071.png" /> by local [[Class field theory|class field theory]]. | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Koch, "Galoissche Theorie der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737072.png" />-Erweiterungen" , Deutsch. Verlag Wissenschaft. (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Milnor, "Introduction to algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067370/n06737073.png" />-theory" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.R. Shafarevich, "A general reciprocity law" ''Mat. Sb.'' , '''26''' : 1 (1950) pp. 113–146 (In Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD |
| + | valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic |
| + | number theory'' , Acad. Press (1986)</TD></TR><TR><TD |
| + | valign="top">[2]</TD> <TD valign="top"> H. Koch, "Galoissche Theorie |
| + | der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft. |
| + | (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> |
| + | J.W. Milnor, "Introduction to algebraic $K$-theory" , Princeton |
| + | Univ. Press (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD |
| + | valign="top"> I.R. Shafarevich, "A general reciprocity law" |
| + | ''Mat. Sb.'' , '''26''' : 1 (1950) pp. 113–146 (In |
| + | Russian)</TD></TR></table> |
| | | |
| | | |
Line 56: |
Line 88: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Iwasawa, "Local class field theory" , Oxford Univ. Press (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. 4, Sect. 8</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD |
| + | valign="top"> K. Iwasawa, "Local class field theory" , Oxford |
| + | Univ. Press (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD |
| + | valign="top"> J. Neukirch, "Class field theory" , Springer (1986) |
| + | pp. Chapt. 4, Sect. 8</TD></TR></table> |
norm residue, Hilbert $a\in {K'}^*$ction that associates with an ordered pair of elements $x,y$ of the
multiplicative group $K^*$ of a
local field $K$ an element $(x,y)\in K^*$ that is an $n$-th root
of unity. This function can be defined as follows. Let $\zeta_n\in K$ be a
primitive $n$-th root of unity. The maximal Abelian extension $L$ of
$K$ with Galois group $G(L/K)$ of exponent $n$ is obtained by adjoining to
$K$ the roots $a^{1/n}$ for all $a\in K^*$. On the other hand, there is a canonical
isomorphism (the fundamental isomorphism of local
class field theory)
$$\theta:K^*/{K^*}^n \to \mathrm{Gal}(L/K).$$
The norm residue of
the pair $(x,y)$ is defined by
$$\theta(y)(x^{1/n}) = (x,y)x^{1/n}.$$
D. Hilbert introduced the concept of
a norm-residue symbol in the special case of quadratic fields with
$n=2$. In
[4] there is an explicit definition of the norm
residue using only local class field theory.
Properties of the symbol $(x,y)$:
1) bilinearity: $(x_1x_2,y) = (x_1,y)(x_2,y),\quad (x,y_1y_2)=(x,y_1)(x,y_2)$;
2) skew-symmetry: $(x,y)(y,x)=1$;
3) non-degeneracy: $(x,y)=1$ for all $x\in K^*$ implies $y\in {K^*}^n$; $(x,y)=1$ for all $y\in K^*$
implies $x\in {K^*}^n$;
4) if $x+y=1$, then $(x,y)=1$;
5) if $\sigma$ is an automorphism of $K$, then
$$(\sigma x, \sigma y) = \sigma(x,y)$$
6) let $K'$ be a finite
extension of $K$, $a\in {K'}^*$
and $b\in K^*$. Then
$$(a,b) = (N_{K'/K}(a),b)$$
where on the left-hand side
the norm-residue symbol is regarded for $K'$ and on the right-hand side
that for $K$, and where $N_{K'/K}$ is the
norm map from $K'$ into $K$;
7) $(x,y)=1$ implies that $y$ is a norm in the extension $K(x^{1/n})$. (This explains
the name of the symbol.)
The function $(x,y)$ induces a non-degenerate bilinear pairing
$$K^*/{K^*}^n \times K^*/{K^*}^n \to \mu(n)$$
where
$\mu(n)$ is the group of roots of unity generated by $\zeta_n$. Let $\Psi:K^*\times K^* \to A$ be a
mapping into some Abelian group $A$ satisfying 1), 4) and the
condition of continuity: For any $y\in K^*$ the set $\{x\in K^* | \Psi(x,y)=1\}$ is closed in $K^*$. The
norm-residue symbol has the following universal property
[3]: If $n$ is the number of roots of unity in $K$,
then there exists a homomorphism $\phi:\mu(n) \to A$ such that for any $x,y\in K^*$,
$$\Psi(x,y) = \phi((x,y)).$$
This
property can serve as a basic axiomatic definition of the norm-residue
symbol.
If $F$ is a
global field and $K$ is the completion of $F$
relative to a place $\nu$, then by the norm-residue symbol one also
means the function $(x,y)_\nu$ defined over $F^*\times F^*$ that is obtained by
composition of the (local) norm-residue symbol $(x,y)$ with the natural
imbedding $F^*\to K^*$.
Often the norm-residue symbol is defined as an automorphism $\theta(x)$ of the
maximal Abelian extension of $K$ corresponding to an element $x\in K^*$ by
local
class field theory.
References
[1] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic
number theory , Acad. Press (1986) |
[2] | H. Koch, "Galoissche Theorie
der $p$-Erweiterungen" , Deutsch. Verlag Wissenschaft.
(1970) |
[3] |
J.W. Milnor, "Introduction to algebraic $K$-theory" , Princeton
Univ. Press (1971) |
[4] | I.R. Shafarevich, "A general reciprocity law"
Mat. Sb. , 26 : 1 (1950) pp. 113–146 (In
Russian) |
References
[a1] | K. Iwasawa, "Local class field theory" , Oxford
Univ. Press (1986) |
[a2] | J. Neukirch, "Class field theory" , Springer (1986)
pp. Chapt. 4, Sect. 8 |