|
|
Line 1: |
Line 1: |
− | The Hasse invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466601.png" /> of a central simple algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466602.png" /> over a local field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466603.png" /> (or over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466604.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466605.png" />) is the image of the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466606.png" /> under the canonical isomorphism of the [[Brauer group|Brauer group]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466607.png" /> onto the group of all complex roots of unity (or onto the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466608.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h0466609.png" />). For a cyclic algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666010.png" /> with generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666011.png" /> and defining relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666016.png" /> is a primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666017.png" />-th root of unity, the Hasse invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666018.png" /> is the same as the [[Norm-residue symbol|norm-residue symbol]] (Hilbert symbol) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666019.png" />. In particular, the Hasse invariant of the quaternion algebra is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666020.png" />. | + | The Hasse invariant $h(A)$ of a central simple algebra $A$ over a local |
| + | field $K$ (or over the field $K=\R$ or $\C$) is the image of the class of |
| + | $A$ under the canonical isomorphism of the |
| + | [[Brauer group|Brauer group]] of $K$ onto the group of all complex |
| + | roots of unity (or onto the group $\{\pm1\}$ or $\{1\}$). For a cyclic algebra |
| + | $A$ with generators $a,b$ and defining relations $a^n=x$, $b^n=y$, $ba=\epsilon ab$, where |
| + | $x,y\in K^*$ and $\epsilon\in K$ is a primitive $n$-th root of unity, the Hasse invariant |
| + | $h(A)$ is the same as the |
| + | [[Norm-residue symbol|norm-residue symbol]] (Hilbert symbol) $(x,y)_n$. In |
| + | particular, the Hasse invariant of the quaternion algebra is $-1$. |
| | | |
− | For a [[Central algebra|central algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666021.png" /> over a global field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666022.png" /> and any [[Valuation|valuation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666023.png" /> of this field the local Hasse invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666024.png" /> is defined as the Hasse invariant of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666025.png" /> over the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666026.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666027.png" /> in the topology determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666028.png" />. The local Hasse invariants determine the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666029.png" /> uniquely. They are related by the following conditions: 1) there are only finitely-many valuations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666030.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666031.png" />; and 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666032.png" /> (the reciprocity law). Apart from these conditions they can assume arbitrary values. | + | For a |
| + | [[Central algebra|central algebra]] $A$ over a global field $K$ and |
| + | any |
| + | [[Valuation|valuation]] $\nu$ of this field the local Hasse invariant |
| + | $h_\nu(A)$ is defined as the Hasse invariant of the algebra $A\otimes K_\nu$ over the |
| + | completion $K_\nu$ of $K$ in the topology determined by $\nu$. The local |
| + | Hasse invariants determine the class of $A$ uniquely. They are related |
| + | by the following conditions: 1) there are only finitely-many |
| + | valuations $\nu$ for which $h_\nu(A)\ne 1$; and 2) $\prod_\nu h_\nu(A) = 1$ (the reciprocity law). Apart |
| + | from these conditions they can assume arbitrary values. |
| | | |
− | The Hasse invariant was introduced by H. Hasse [[#References|[1]]] and [[#References|[2]]]. | + | The Hasse invariant was introduced by H. Hasse |
| + | [[#References|[1]]] and |
| + | [[#References|[2]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hasse, "Ueber <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666033.png" />-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexen Zahlsysteme" ''Math. Ann.'' , '''104''' (1931) pp. 495–534</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Hasse, "Die Struktur der R. Brauerschen Algebrenklassengruppe über einem algebraischen Zahlkörper. Inbesondere Begründung der Theorie des Normenrestsymbols und Herleitung des Reziprozitätsgesetzes mit nichtkommutativen Hilfsmitteln" ''Math. Ann.'' , '''107''' (1933) pp. 731–760</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Weil, "Basic number theory" , Springer (1967)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD |
| + | valign="top"> H. Hasse, "Ueber $p$-adische Schiefkörper und ihre |
| + | Bedeutung für die Arithmetik hyperkomplexen Zahlsysteme" |
| + | ''Math. Ann.'' , '''104''' (1931) pp. 495–534</TD></TR><TR><TD |
| + | valign="top">[2]</TD> <TD valign="top"> H. Hasse, "Die Struktur der |
| + | R. Brauerschen Algebrenklassengruppe über einem algebraischen |
| + | Zahlkörper. Inbesondere Begründung der Theorie des Normenrestsymbols |
| + | und Herleitung des Reziprozitätsgesetzes mit nichtkommutativen |
| + | Hilfsmitteln" ''Math. Ann.'' , '''107''' (1933) |
| + | pp. 731–760</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> |
| + | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' |
| + | , Acad. Press (1986)</TD></TR><TR><TD valign="top">[4]</TD> <TD |
| + | valign="top"> A. Weil, "Basic number theory" , Springer |
| + | (1967)</TD></TR></table> |
| | | |
− | The Hasse invariant, the Hasse–Minkowski invariant, Hasse's symbol, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666034.png" />, of a non-degenerate [[Quadratic form|quadratic form]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666035.png" /> over a local field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666036.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666037.png" /> (or over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666038.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666039.png" />) is the product | + | The Hasse invariant, the Hasse–Minkowski invariant, Hasse's symbol, |
| + | $\epsilon(f)$, of a non-degenerate |
| + | [[Quadratic form|quadratic form]] $f\sim a_1 x_1^2 + \cdots + a_n |
| + | x_n^2$ |
| + | over a local field $K$ of |
| + | characteristic $\ne 2$ (or over the field $K=\R$ or $\C$) is the product $$\prod_{i<j} (a_i,a_j) = \pm 1$$ |
| + | where $(\ ,\ )$ is the quadratic Hilbert symbol, that is, $(a,b) = 1$ if the |
| + | quadratic form $ax^2+by^2$ represents 1 in the field $K$ and $(a,b) = -1$ |
| + | otherwise. The Hasse invariant depends only on the equivalence class |
| + | of the form $f$, and not on the choice of a diagonal form in this |
| + | class. Sometimes the Hasse invariant is defined as the product $\prod_{i\le j}(a_i,a_j)$, |
| + | which differs from the definition above by the factor $(d(f),d(f))$, where $d(f)$ |
| + | is the |
| + | [[Discriminant|discriminant]] of the form $f$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666040.png" /></td> </tr></table>
| + | In the case of a local field $K$ the number $n$ of variables, the |
| + | discriminant and the Hasse invariant determine the class of the form |
| + | $f$. For $n\ge 3$, the invariants $d(f)$ and $\epsilon(f)$ can take arbitrary values |
| + | independently of each other; for $n=2$ the case $d(f)=-1$, $\epsilon(f) = -1$ is excluded; |
| + | for $n=1$ one always has $\epsilon(f) = 1$. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666041.png" /> is the quadratic Hilbert symbol, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666042.png" /> if the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666043.png" /> represents 1 in the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666045.png" /> otherwise. The Hasse invariant depends only on the equivalence class of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666046.png" />, and not on the choice of a diagonal form in this class. Sometimes the Hasse invariant is defined as the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666047.png" />, which differs from the definition above by the factor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666048.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666049.png" /> is the [[Discriminant|discriminant]] of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666050.png" />.
| + | When $K=\R$, the Hasse invariant can be expressed in terms of the |
| + | [[Signature|signature]], namely, $$\def\e{\epsilon} \e(f) = (-1)^{s(s-1)/2}$$ where $s$ is the negative index |
| + | of inertia of the form $f$. When $K=\C$, one has $\e(f)=1$. |
| | | |
− | In the case of a local field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666051.png" /> the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666052.png" /> of variables, the discriminant and the Hasse invariant determine the class of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666053.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666054.png" />, the invariants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666056.png" /> can take arbitrary values independently of each other; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666057.png" /> the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666059.png" /> is excluded; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666060.png" /> one always has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666061.png" />.
| + | For a non-degenerate quadratic form $f$ over a global field $K$ of |
| + | characteristic $\ne 2$ and any valuation $\nu$ of $K$ the local Hasse |
| + | invariant $\e_\nu(f)$ is defined as the Hasse invariant of the quadratic form |
| + | $f$ regarded over the completion $K_\nu$ of $K$ in the topology determined |
| + | by $\nu$. The number of variables, the discriminant, the local Hasse |
| + | invariants, and the signatures over the real completions of $K$ |
| + | determine the class of $f$. |
| | | |
− | When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666062.png" />, the Hasse invariant can be expressed in terms of the [[Signature|signature]], namely,
| + | Necessary and sufficient conditions for the existence of a |
| + | non-degenerate quadratic form in $n$ variables over a global field $K$ |
| + | of characteristic $\ne 2$ having a given discriminant $d\ne 0$, given the local |
| + | Hasse invariants $\e_\nu$, and, for real valuations $\nu$, given the negative |
| + | indices of inertia $s_\nu$, are as follows: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666063.png" /></td> </tr></table>
| + | a) $\e_\nu \ne 1$ for only finitely-many valuations $\nu$; |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666064.png" /> is the negative index of inertia of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666065.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666066.png" />, one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666067.png" />.
| + | b) $\prod_\nu \e_\nu = 1$ (a consequence of the |
| + | [[Quadratic reciprocity law|quadratic reciprocity law]]); |
| | | |
− | For a non-degenerate quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666068.png" /> over a global field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666069.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666070.png" /> and any valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666071.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666072.png" /> the local Hasse invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666073.png" /> is defined as the Hasse invariant of the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666074.png" /> regarded over the completion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666075.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666076.png" /> in the topology determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666077.png" />. The number of variables, the discriminant, the local Hasse invariants, and the signatures over the real completions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666078.png" /> determine the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666079.png" />.
| + | c) $\e_\nu = 1$ if $n=1$ or if $n=2$ and $d\in (-1)(K_\nu^*)^2$; |
| | | |
− | Necessary and sufficient conditions for the existence of a non-degenerate quadratic form in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666080.png" /> variables over a global field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666081.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666082.png" /> having a given discriminant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666083.png" />, given the local Hasse invariants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666084.png" />, and, for real valuations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666085.png" />, given the negative indices of inertia <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666086.png" />, are as follows:
| + | d) $\e_\nu = (-1)^{s_\nu(s_\nu-1)/2}$ for every real valuation $\nu$; |
| | | |
− | a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666087.png" /> for only finitely-many valuations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666088.png" />;
| + | e) $\e_\nu=1$ for every complex valuation $\nu$; |
| | | |
− | b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666089.png" /> (a consequence of the [[Quadratic reciprocity law|quadratic reciprocity law]]);
| + | f) ${\rm sign}\; d_\nu = (-1)^{s_\nu}$ for every real valuation $\nu$ (here $d_\nu$ is the image of $d$ |
− | | + | under the isomorphism $K_\nu\to \R$). |
− | c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666090.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666091.png" /> or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666092.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666093.png" />;
| |
− | | |
− | d) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666094.png" /> for every real valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666095.png" />;
| |
− | | |
− | e) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666096.png" /> for every complex valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666097.png" />;
| |
− | | |
− | f) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666098.png" /> for every real valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h04666099.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h046660100.png" /> is the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h046660101.png" /> under the isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h046660102.png" />).
| |
| | | |
| The Hasse invariant was introduced by H. Hasse . | | The Hasse invariant was introduced by H. Hasse . |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Hasse, "Ueber die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen" ''J. Reine Angew. Math.'' , '''152''' (1923) pp. 129–148</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Hasse, "Ueber die Aequivalenz quadratischer Formen im Körper der rationalen Zahlen" ''J. Reine Angew. Math.'' , '''152''' (1923) pp. 205–224</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> H. Hasse, "Symmetrische Matrizen im Körper der rationalen Zahlen" ''J. Reine Angew. Math.'' , '''153''' (1924) pp. 12–43</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'' , '''153''' (1924) pp. 113–130</TD></TR><TR><TD valign="top">[1e]</TD> <TD valign="top"> H. Hasse, "Aequivalenz quadratischer Formen in einem beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'' , '''153''' (1924) pp. 158–162</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O.T. O'Meara, "Introduction to quadratic forms" , Springer (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> T.Y. Lam, "The algebraic theory of quadratic forms" , Benjamin (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.W.S. Cassels, "Rational quadratic forms" , Acad. Press (1978)</TD></TR></table> | + | <table><TR><TD valign="top">[1a]</TD> <TD |
| + | valign="top"> H. Hasse, "Ueber die Darstellbarkeit von Zahlen durch |
| + | quadratische Formen im Körper der rationalen Zahlen" ''J. Reine |
| + | Angew. Math.'' , '''152''' (1923) pp. 129–148</TD></TR><TR><TD |
| + | valign="top">[1b]</TD> <TD valign="top"> H. Hasse, "Ueber die |
| + | Aequivalenz quadratischer Formen im Körper der rationalen Zahlen" |
| + | ''J. Reine Angew. Math.'' , '''152''' (1923) |
| + | pp. 205–224</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> |
| + | H. Hasse, "Symmetrische Matrizen im Körper der rationalen Zahlen" |
| + | ''J. Reine Angew. Math.'' , '''153''' (1924) |
| + | pp. 12–43</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> |
| + | H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in |
| + | einem beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'' , |
| + | '''153''' (1924) pp. 113–130</TD></TR><TR><TD valign="top">[1e]</TD> |
| + | <TD valign="top"> H. Hasse, "Aequivalenz quadratischer Formen in einem |
| + | beliebigen algebraischen Zahlkörper" ''J. Reine Angew. Math.'' , |
| + | '''153''' (1924) pp. 158–162</TD></TR><TR><TD valign="top">[2]</TD> |
| + | <TD valign="top"> O.T. O'Meara, "Introduction to quadratic forms" , |
| + | Springer (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD |
| + | valign="top"> T.Y. Lam, "The algebraic theory of quadratic forms" , |
| + | Benjamin (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD |
| + | valign="top"> J.W.S. Cassels, "Rational quadratic forms" , Acad. Press |
| + | (1978)</TD></TR></table> |
| | | |
− | The Hasse invariant of an elliptic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h046660103.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h046660104.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h046660105.png" /> is the number 0 or 1 depending on whether the endomorphism of the cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h046660106.png" /> induced by the [[Frobenius endomorphism|Frobenius endomorphism]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046660/h046660107.png" /> is null or bijective. Curves for which the Hasse invariant is zero are called supersingular. | + | The Hasse invariant of an elliptic curve $X$ over a field $K$ of |
| + | characteristic $p>0$ is the number 0 or 1 depending on whether the |
| + | endomorphism of the cohomology group $H^1(X,\mathcal{O}_X)$ induced by the |
| + | [[Frobenius endomorphism|Frobenius endomorphism]] of $X$ is null or |
| + | bijective. Curves for which the Hasse invariant is zero are called |
| + | supersingular. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Yu.I. Manin, "On the Hasse–Witt matrix of an algebraic curve" ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''25''' : 1 (1961) pp. 153–172 (In Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD |
| + | valign="top"> R. Hartshorne, "Algebraic geometry" , Springer |
| + | (1977)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> |
| + | Yu.I. Manin, "On the Hasse–Witt matrix of an algebraic curve" |
| + | ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''25''' : 1 (1961) pp. 153–172 |
| + | (In Russian)</TD></TR></table> |
| | | |
| | | |
Line 54: |
Line 142: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.H. Silverman, "The arithmetic of elliptic curves" , Springer (1986)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD |
| + | valign="top"> J.H. Silverman, "The arithmetic of elliptic curves" , |
| + | Springer (1986)</TD></TR></table> |
The Hasse invariant $h(A)$ of a central simple algebra $A$ over a local
field $K$ (or over the field $K=\R$ or $\C$) is the image of the class of
$A$ under the canonical isomorphism of the
Brauer group of $K$ onto the group of all complex
roots of unity (or onto the group $\{\pm1\}$ or $\{1\}$). For a cyclic algebra
$A$ with generators $a,b$ and defining relations $a^n=x$, $b^n=y$, $ba=\epsilon ab$, where
$x,y\in K^*$ and $\epsilon\in K$ is a primitive $n$-th root of unity, the Hasse invariant
$h(A)$ is the same as the
norm-residue symbol (Hilbert symbol) $(x,y)_n$. In
particular, the Hasse invariant of the quaternion algebra is $-1$.
For a
central algebra $A$ over a global field $K$ and
any
valuation $\nu$ of this field the local Hasse invariant
$h_\nu(A)$ is defined as the Hasse invariant of the algebra $A\otimes K_\nu$ over the
completion $K_\nu$ of $K$ in the topology determined by $\nu$. The local
Hasse invariants determine the class of $A$ uniquely. They are related
by the following conditions: 1) there are only finitely-many
valuations $\nu$ for which $h_\nu(A)\ne 1$; and 2) $\prod_\nu h_\nu(A) = 1$ (the reciprocity law). Apart
from these conditions they can assume arbitrary values.
The Hasse invariant was introduced by H. Hasse
[1] and
[2].
References
[1] | H. Hasse, "Ueber $p$-adische Schiefkörper und ihre
Bedeutung für die Arithmetik hyperkomplexen Zahlsysteme"
Math. Ann. , 104 (1931) pp. 495–534 |
[2] | H. Hasse, "Die Struktur der
R. Brauerschen Algebrenklassengruppe über einem algebraischen
Zahlkörper. Inbesondere Begründung der Theorie des Normenrestsymbols
und Herleitung des Reziprozitätsgesetzes mit nichtkommutativen
Hilfsmitteln" Math. Ann. , 107 (1933)
pp. 731–760 |
[3] |
J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory
, Acad. Press (1986) |
[4] | A. Weil, "Basic number theory" , Springer
(1967) |
The Hasse invariant, the Hasse–Minkowski invariant, Hasse's symbol,
$\epsilon(f)$, of a non-degenerate
quadratic form $f\sim a_1 x_1^2 + \cdots + a_n
x_n^2$
over a local field $K$ of
characteristic $\ne 2$ (or over the field $K=\R$ or $\C$) is the product $$\prod_{i<j} (a_i,a_j) = \pm 1$$
where $(\ ,\ )$ is the quadratic Hilbert symbol, that is, $(a,b) = 1$ if the
quadratic form $ax^2+by^2$ represents 1 in the field $K$ and $(a,b) = -1$
otherwise. The Hasse invariant depends only on the equivalence class
of the form $f$, and not on the choice of a diagonal form in this
class. Sometimes the Hasse invariant is defined as the product $\prod_{i\le j}(a_i,a_j)$,
which differs from the definition above by the factor $(d(f),d(f))$, where $d(f)$
is the
discriminant of the form $f$.
In the case of a local field $K$ the number $n$ of variables, the
discriminant and the Hasse invariant determine the class of the form
$f$. For $n\ge 3$, the invariants $d(f)$ and $\epsilon(f)$ can take arbitrary values
independently of each other; for $n=2$ the case $d(f)=-1$, $\epsilon(f) = -1$ is excluded;
for $n=1$ one always has $\epsilon(f) = 1$.
When $K=\R$, the Hasse invariant can be expressed in terms of the
signature, namely, $$\def\e{\epsilon} \e(f) = (-1)^{s(s-1)/2}$$ where $s$ is the negative index
of inertia of the form $f$. When $K=\C$, one has $\e(f)=1$.
For a non-degenerate quadratic form $f$ over a global field $K$ of
characteristic $\ne 2$ and any valuation $\nu$ of $K$ the local Hasse
invariant $\e_\nu(f)$ is defined as the Hasse invariant of the quadratic form
$f$ regarded over the completion $K_\nu$ of $K$ in the topology determined
by $\nu$. The number of variables, the discriminant, the local Hasse
invariants, and the signatures over the real completions of $K$
determine the class of $f$.
Necessary and sufficient conditions for the existence of a
non-degenerate quadratic form in $n$ variables over a global field $K$
of characteristic $\ne 2$ having a given discriminant $d\ne 0$, given the local
Hasse invariants $\e_\nu$, and, for real valuations $\nu$, given the negative
indices of inertia $s_\nu$, are as follows:
a) $\e_\nu \ne 1$ for only finitely-many valuations $\nu$;
b) $\prod_\nu \e_\nu = 1$ (a consequence of the
quadratic reciprocity law);
c) $\e_\nu = 1$ if $n=1$ or if $n=2$ and $d\in (-1)(K_\nu^*)^2$;
d) $\e_\nu = (-1)^{s_\nu(s_\nu-1)/2}$ for every real valuation $\nu$;
e) $\e_\nu=1$ for every complex valuation $\nu$;
f) ${\rm sign}\; d_\nu = (-1)^{s_\nu}$ for every real valuation $\nu$ (here $d_\nu$ is the image of $d$
under the isomorphism $K_\nu\to \R$).
The Hasse invariant was introduced by H. Hasse .
References
[1a] | H. Hasse, "Ueber die Darstellbarkeit von Zahlen durch
quadratische Formen im Körper der rationalen Zahlen" J. Reine
Angew. Math. , 152 (1923) pp. 129–148 |
[1b] | H. Hasse, "Ueber die
Aequivalenz quadratischer Formen im Körper der rationalen Zahlen"
J. Reine Angew. Math. , 152 (1923)
pp. 205–224 |
[1c] |
H. Hasse, "Symmetrische Matrizen im Körper der rationalen Zahlen"
J. Reine Angew. Math. , 153 (1924)
pp. 12–43 |
[1d] |
H. Hasse, "Darstellbarkeit von Zahlen durch quadratische Formen in
einem beliebigen algebraischen Zahlkörper" J. Reine Angew. Math. ,
153 (1924) pp. 113–130 |
[1e] |
H. Hasse, "Aequivalenz quadratischer Formen in einem
beliebigen algebraischen Zahlkörper" J. Reine Angew. Math. ,
153 (1924) pp. 158–162 |
[2] |
O.T. O'Meara, "Introduction to quadratic forms" ,
Springer (1963) |
[3] | T.Y. Lam, "The algebraic theory of quadratic forms" ,
Benjamin (1973) |
[4] | J.W.S. Cassels, "Rational quadratic forms" , Acad. Press
(1978) |
The Hasse invariant of an elliptic curve $X$ over a field $K$ of
characteristic $p>0$ is the number 0 or 1 depending on whether the
endomorphism of the cohomology group $H^1(X,\mathcal{O}_X)$ induced by the
Frobenius endomorphism of $X$ is null or
bijective. Curves for which the Hasse invariant is zero are called
supersingular.
References
[1] | R. Hartshorne, "Algebraic geometry" , Springer
(1977) |
[2] |
Yu.I. Manin, "On the Hasse–Witt matrix of an algebraic curve"
Izv. Akad. Nauk. SSSR Ser. Mat. , 25 : 1 (1961) pp. 153–172
(In Russian) |
References
[a1] | J.H. Silverman, "The arithmetic of elliptic curves" ,
Springer (1986) |