Namespaces
Variants
Actions

Difference between revisions of "Monogeneity set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The set of all derived numbers (Dini derivatives, cf. [[Dini derivative|Dini derivative]]) of a given function of a complex variable at a given point. More precisely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647101.png" /> be a set in the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647102.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647103.png" /> be a non-isolated point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647104.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647105.png" /> be a complex function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647106.png" />. A complex number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647107.png" /> (proper or equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647108.png" />) is called a derived number (or Dini derivative) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m0647109.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471010.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471011.png" /> if there is a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471012.png" /> with the properties: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471014.png" />,
+
<!--
 +
m0647101.png
 +
$#A+1 = 84 n = 0
 +
$#C+1 = 84 : ~/encyclopedia/old_files/data/M064/M.0604710 Monogeneity set
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471015.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471016.png" /> of all derived numbers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471017.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471018.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471019.png" /> is called the monogeneity set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471020.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471021.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471022.png" /> (see [[#References|[1]]]). The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471023.png" /> consists of a unique finite point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471024.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471025.png" /> is a [[Monogenic function|monogenic function]] at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471026.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471028.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471029.png" /> is always closed, and for each closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471030.png" /> in the extended complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471031.png" />, each set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471032.png" /> and each finite non-isolated point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471034.png" />, there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471036.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471037.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471038.png" /> is an interior point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471039.png" />, then for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471040.png" /> that is continuous in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471041.png" />, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471042.png" /> is closed and connected (a [[Continuum|continuum]]) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471043.png" /> and, conversely, for any continuum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471044.png" /> there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471045.png" />, continuous in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471046.png" />, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471048.png" /> is differentiable with respect to the set of real variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471049.png" /> at an interior point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471050.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471051.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471052.png" /> is the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471053.png" /> (possibly degenerating into a point, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471054.png" />) with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471055.png" /> and radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471056.png" />, where
+
The set of all derived numbers (Dini derivatives, cf. [[Dini derivative|Dini derivative]]) of a given function of a complex variable at a given point. More precisely, let  $  E $
 +
be a set in the complex plane $  \mathbf C $,  
 +
let  $  \zeta $
 +
be a non-isolated point of $  E $
 +
and let  $  f ( z) $
 +
be a complex function of $  z \in E $.  
 +
A complex number  $  a $(
 +
proper or equal to  $  \infty $)
 +
is called a derived number (or Dini derivative) of  $  f $
 +
at  $  \zeta $
 +
relative to  $  E $
 +
if there is a sequence  $  z _ {n} \in E $
 +
with the properties: $  z _ {n} \neq \zeta $,  
 +
$  z _ {n} \rightarrow \zeta $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471057.png" /></td> </tr></table>
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471058.png" /></td> </tr></table>
+
\frac{f ( z _ {n} ) - f ( \zeta ) }{z _ {n} - \zeta }
  
are the so-called formal derivatives. The converse is also true: Each circle is the monogeneity set for some function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471059.png" />, differentiable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471060.png" />, at a given interior point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471061.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471062.png" />.
+
\rightarrow  a \ \
 +
\textrm{ as }  n \rightarrow \infty .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471063.png" /> is continuous in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471064.png" />, then at almost every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471065.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471066.png" /> is either a circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471068.png" />, or is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471069.png" /> (see [[#References|[2]]]). In the general case of an arbitrary (not necessarily measurable) set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471070.png" /> and an arbitrary (not necessarily measurable) finite function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471072.png" />, at almost every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471073.png" /> one of the following three cases holds: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471076.png" />; b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471077.png" />; or c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471078.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471079.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471080.png" />. Here, a) holds at almost every differentiability point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471081.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471082.png" /> and one of the first two cases holds at almost every continuity point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471083.png" />. Each of the cases a)–c) may be realized individually at almost every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064710/m06471084.png" />.
+
The set  $  \mathfrak M ( \zeta , f , E ) $
 +
of all derived numbers of  $  f $
 +
at  $  \zeta $
 +
relative to  $  E $
 +
is called the monogeneity set of  $  f $
 +
at  $  \zeta $
 +
relative to  $  E $(
 +
see [[#References|[1]]]). The set  $  \mathfrak M ( \zeta , f , E ) $
 +
consists of a unique finite point  $  a $
 +
if and only if  $  f ( z) $
 +
is a [[Monogenic function|monogenic function]] at  $  \zeta $
 +
relative to  $  E $
 +
and  $  f _ {E} ^ { \prime } ( \zeta ) = a $.
 +
The set  $  \mathfrak M ( \zeta , f , E ) $
 +
is always closed, and for each closed set  $  A $
 +
in the extended complex plane  $  \overline{\mathbf C}\; $,
 +
each set  $  E \subset  \mathbf C $
 +
and each finite non-isolated point  $  \zeta $
 +
of  $  E $,
 +
there is a function  $  f ( z) $,
 +
$  z \in E $,
 +
such that  $  \mathfrak M ( \zeta , f , E ) = A $.  
 +
If  $  \zeta $
 +
is an interior point of  $  E $,
 +
then for any function  $  f ( z) $
 +
that is continuous in a neighbourhood of  $  \zeta $,
 +
the set  $  \mathfrak M ( \zeta , f , E ) $
 +
is closed and connected (a [[Continuum|continuum]]) in  $  \overline{\mathbf C}\; $
 +
and, conversely, for any continuum  $  K \subset  \overline{\mathbf C}\; $
 +
there is a function  $  f ( z) $,
 +
continuous in a neighbourhood of  $  \zeta $,
 +
for which  $  \mathfrak M ( \zeta , f , E ) = K $.
 +
If  $  f ( z) = f ( x + i y ) = u ( x , y ) + i v ( x , y ) $
 +
is differentiable with respect to the set of real variables  $  ( x , y ) $
 +
at an interior point  $  \zeta = \xi + i \eta $
 +
of  $  E $,  
 +
then $  \mathfrak M ( \zeta , f , E ) $
 +
is the circle  $  \gamma ( r , c ) = \{ {w } : {| w - c | = r } \} $(
 +
possibly degenerating into a point,  $  r = 0 $)
 +
with centre  $  c = \partial  f ( \zeta ) / \partial  z $
 +
and radius  $  r = | \partial  f ( \zeta ) / \partial  \overline{z}\; | $,
 +
where
 +
 
 +
$$
 +
 
 +
\frac{\partial  f }{\partial  z }
 +
 
 +
 +
\frac{1}{2}
 +
 
 +
\left (
 +
 
 +
\frac{\partial  f }{\partial  x }
 +
 
 +
- i
 +
 
 +
\frac{\partial  f }{\partial  y }
 +
 
 +
\right )
 +
=
 +
\frac{1}{2}
 +
 
 +
\left (
 +
 
 +
\frac{\partial  u }{\partial  x }
 +
+
 +
 
 +
\frac{\partial  v }{\partial  y }
 +
 
 +
\right )
 +
+
 +
\frac{i}{2}
 +
 
 +
\left (
 +
 
 +
\frac{\partial  v }{\partial  x }
 +
-
 +
 
 +
\frac{\partial  u }{\partial  y }
 +
 
 +
\right ) ,
 +
$$
 +
 
 +
$$
 +
 
 +
\frac{\partial  f }{\partial  \overline{z}\; }
 +
  =
 +
\frac{1}{2}
 +
\left (
 +
\frac{\partial
 +
f }{\partial  x }
 +
+ i
 +
\frac{\partial  f }{\partial  y }
 +
 
 +
\right )  =
 +
\frac{1}{2}
 +
\left (
 +
\frac{\partial  u }{\partial
 +
x }
 +
-
 +
\frac{\partial  v }{\partial  y }
 +
\right ) +
 +
\frac{i}{2}
 +
\left (
 +
 
 +
\frac{\partial  v }{\partial  x }
 +
+
 +
\frac{\partial  u }{\partial  y }
 +
\right )
 +
$$
 +
 
 +
are the so-called formal derivatives. The converse is also true: Each circle is the monogeneity set for some function  $  f $,
 +
differentiable with respect to  $  ( x , y ) $,
 +
at a given interior point  $  \zeta $
 +
of  $  E $.
 +
 
 +
If  $  f ( z) $
 +
is continuous in a domain  $  G $,
 +
then at almost every  $  \zeta \in G $
 +
the set  $  \mathfrak M ( \zeta , f , G ) $
 +
is either a circle $  \gamma ( r , c ) $,
 +
0 \leq  r < \infty $,  
 +
or is $  \overline{\mathbf C}\; $(
 +
see [[#References|[2]]]). In the general case of an arbitrary (not necessarily measurable) set $  E $
 +
and an arbitrary (not necessarily measurable) finite function $  f ( z) $,  
 +
$  z \in E $,  
 +
at almost every point $  \zeta \in E $
 +
one of the following three cases holds: a) $  \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) $,
 +
$  c \in \mathbf C $,  
 +
0 \leq  r < \infty $;  
 +
b) $  \mathfrak M ( \zeta , f , E ) = \overline{\mathbf C}\; $;  
 +
or c) $  \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) \cup \infty $,
 +
$  c \in \mathbf C $,  
 +
0 \leq  r < \infty $.  
 +
Here, a) holds at almost every differentiability point of $  f ( z) = f ( x + i y ) $
 +
with respect to $  ( x , y ) \in E $
 +
and one of the first two cases holds at almost every continuity point of $  f ( z) $.  
 +
Each of the cases a)–c) may be realized individually at almost every point $  \zeta \in E $.
  
 
For some natural generalizations to the multi-dimensional case see [[#References|[4]]].
 
For some natural generalizations to the multi-dimensional case see [[#References|[4]]].

Latest revision as of 08:01, 6 June 2020


The set of all derived numbers (Dini derivatives, cf. Dini derivative) of a given function of a complex variable at a given point. More precisely, let $ E $ be a set in the complex plane $ \mathbf C $, let $ \zeta $ be a non-isolated point of $ E $ and let $ f ( z) $ be a complex function of $ z \in E $. A complex number $ a $( proper or equal to $ \infty $) is called a derived number (or Dini derivative) of $ f $ at $ \zeta $ relative to $ E $ if there is a sequence $ z _ {n} \in E $ with the properties: $ z _ {n} \neq \zeta $, $ z _ {n} \rightarrow \zeta $,

$$ \frac{f ( z _ {n} ) - f ( \zeta ) }{z _ {n} - \zeta } \rightarrow a \ \ \textrm{ as } n \rightarrow \infty . $$

The set $ \mathfrak M ( \zeta , f , E ) $ of all derived numbers of $ f $ at $ \zeta $ relative to $ E $ is called the monogeneity set of $ f $ at $ \zeta $ relative to $ E $( see [1]). The set $ \mathfrak M ( \zeta , f , E ) $ consists of a unique finite point $ a $ if and only if $ f ( z) $ is a monogenic function at $ \zeta $ relative to $ E $ and $ f _ {E} ^ { \prime } ( \zeta ) = a $. The set $ \mathfrak M ( \zeta , f , E ) $ is always closed, and for each closed set $ A $ in the extended complex plane $ \overline{\mathbf C}\; $, each set $ E \subset \mathbf C $ and each finite non-isolated point $ \zeta $ of $ E $, there is a function $ f ( z) $, $ z \in E $, such that $ \mathfrak M ( \zeta , f , E ) = A $. If $ \zeta $ is an interior point of $ E $, then for any function $ f ( z) $ that is continuous in a neighbourhood of $ \zeta $, the set $ \mathfrak M ( \zeta , f , E ) $ is closed and connected (a continuum) in $ \overline{\mathbf C}\; $ and, conversely, for any continuum $ K \subset \overline{\mathbf C}\; $ there is a function $ f ( z) $, continuous in a neighbourhood of $ \zeta $, for which $ \mathfrak M ( \zeta , f , E ) = K $. If $ f ( z) = f ( x + i y ) = u ( x , y ) + i v ( x , y ) $ is differentiable with respect to the set of real variables $ ( x , y ) $ at an interior point $ \zeta = \xi + i \eta $ of $ E $, then $ \mathfrak M ( \zeta , f , E ) $ is the circle $ \gamma ( r , c ) = \{ {w } : {| w - c | = r } \} $( possibly degenerating into a point, $ r = 0 $) with centre $ c = \partial f ( \zeta ) / \partial z $ and radius $ r = | \partial f ( \zeta ) / \partial \overline{z}\; | $, where

$$ \frac{\partial f }{\partial z } = \frac{1}{2} \left ( \frac{\partial f }{\partial x } - i \frac{\partial f }{\partial y } \right ) = \frac{1}{2} \left ( \frac{\partial u }{\partial x } + \frac{\partial v }{\partial y } \right ) + \frac{i}{2} \left ( \frac{\partial v }{\partial x } - \frac{\partial u }{\partial y } \right ) , $$

$$ \frac{\partial f }{\partial \overline{z}\; } = \frac{1}{2} \left ( \frac{\partial f }{\partial x } + i \frac{\partial f }{\partial y } \right ) = \frac{1}{2} \left ( \frac{\partial u }{\partial x } - \frac{\partial v }{\partial y } \right ) + \frac{i}{2} \left ( \frac{\partial v }{\partial x } + \frac{\partial u }{\partial y } \right ) $$

are the so-called formal derivatives. The converse is also true: Each circle is the monogeneity set for some function $ f $, differentiable with respect to $ ( x , y ) $, at a given interior point $ \zeta $ of $ E $.

If $ f ( z) $ is continuous in a domain $ G $, then at almost every $ \zeta \in G $ the set $ \mathfrak M ( \zeta , f , G ) $ is either a circle $ \gamma ( r , c ) $, $ 0 \leq r < \infty $, or is $ \overline{\mathbf C}\; $( see [2]). In the general case of an arbitrary (not necessarily measurable) set $ E $ and an arbitrary (not necessarily measurable) finite function $ f ( z) $, $ z \in E $, at almost every point $ \zeta \in E $ one of the following three cases holds: a) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) $, $ c \in \mathbf C $, $ 0 \leq r < \infty $; b) $ \mathfrak M ( \zeta , f , E ) = \overline{\mathbf C}\; $; or c) $ \mathfrak M ( \zeta , f , E ) = \gamma ( r , c ) \cup \infty $, $ c \in \mathbf C $, $ 0 \leq r < \infty $. Here, a) holds at almost every differentiability point of $ f ( z) = f ( x + i y ) $ with respect to $ ( x , y ) \in E $ and one of the first two cases holds at almost every continuity point of $ f ( z) $. Each of the cases a)–c) may be realized individually at almost every point $ \zeta \in E $.

For some natural generalizations to the multi-dimensional case see [4].

References

[1] V.S. Fedorov, "The work of N.N. Luzin on the theory of functions of a complex variable" Uspekhi Mat. Nauk , 7 : 2 (1952) pp. 7–16 (In Russian)
[2] Yu.Yu. Trokhimchuk, "Continuous mappings and monogeneity conditions" , Moscow (1963) (In Russian)
[3] E.P. Dolzhenko, "On the derived numbers of complex functions" Izv. Akad. Nauk SSSR Ser. Mat. , 26 (1962) pp. 347–360 (In Russian)
[4] A.V. Bondar, "Continuous operator conformal mappings" Ukr. Math. J. , 32 : 3 (1980) pp. 207–212 Ukrain. Mat. Zh. , 32 : 3 (1980) pp. 314–322
How to Cite This Entry:
Monogeneity set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monogeneity_set&oldid=18192
This article was adapted from an original article by E.P. Dolzhenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article